Home
Class 12
MATHS
Find the value of sin^(-1)("sin"(2pi)/...

Find the value of
`sin^(-1)("sin"(2pi)/(3))+cos^(-1)("cos"(4pi)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) + \cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) \), we can follow these steps: ### Step 1: Simplify \( \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) \) The value of \( \frac{2\pi}{3} \) is in the second quadrant, where the sine function is positive. The sine inverse function returns values in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). To find the equivalent angle in this range, we can use the identity: \[ \sin^{-1}(\sin(\theta)) = \theta \quad \text{if } \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] However, since \( \frac{2\pi}{3} \) is not in this range, we can find its reference angle: \[ \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \pi - \frac{2\pi}{3} = \frac{\pi}{3} \] ### Step 2: Simplify \( \cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) \) The angle \( \frac{4\pi}{3} \) is in the third quadrant, where the cosine function is negative. The cosine inverse function returns values in the range \( [0, \pi] \). To find the equivalent angle in this range, we can use the identity: \[ \cos^{-1}(\cos(\theta)) = \theta \quad \text{if } \theta \in [0, \pi] \] Since \( \frac{4\pi}{3} \) is not in this range, we can find its reference angle: \[ \cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) = 2\pi - \frac{4\pi}{3} = \frac{2\pi}{3} \] ### Step 3: Combine the results Now we can add the results from Step 1 and Step 2: \[ \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) + \cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) = \frac{\pi}{3} + \frac{2\pi}{3} = \pi \] ### Final Answer Thus, the value of \( \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) + \cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) \) is: \[ \boxed{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

Find the value of: i) sin^(-1)(sin (2pi)/3)) , ii) cos^(-1)(cos(7pi)/6) , iii) tan^(-1)(tan(3pi)/4)

Find the value of: i) sin^(-1)(sinpi/3) ii) cos^(-1)(cos(2pi)/3)) , iii) tan^(-1)(tanpi/4)

Find the value of sin^(-1)(cos(pi/5))

The value of sin^(-1)(cos""(3pi)/(5)) is

Find the value of : (1) sin^(-1)(sin.(5pi)/(6)) (2) cos^(-1)(cos.(13pi)/(6)) (3) tan^(-1)(tan.(7pi)/(6))

The value of cos^(-1)(cos((pi)/(2)))+cos^(-1)(sin((2pi)/(3))) is

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]