Home
Class 12
MATHS
If y=e^([log (x+1)-log x])." Find" (dy)/...

If `y=e^([log (x+1)-log x])." Find" (dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = e^{\log(x+1) - \log x} \). ### Step-by-Step Solution: 1. **Simplify the expression**: We can use the properties of logarithms to simplify the exponent: \[ \log(x+1) - \log x = \log\left(\frac{x+1}{x}\right) \] Therefore, we can rewrite \( y \) as: \[ y = e^{\log\left(\frac{x+1}{x}\right)} \] 2. **Use the property of exponentials and logarithms**: Since \( e^{\log(a)} = a \), we can simplify \( y \) further: \[ y = \frac{x+1}{x} \] 3. **Differentiate \( y \)**: Now, we differentiate \( y \) with respect to \( x \): \[ y = \frac{x+1}{x} = 1 + \frac{1}{x} \] The derivative of \( y \) is: \[ \frac{dy}{dx} = 0 - \frac{1}{x^2} = -\frac{1}{x^2} \] 4. **Final result**: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{x^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

y=e^(log[log(log x)])xx log3x find (dy)/(dx)

If y = e^(log (log x ))log3 x,then (dy)/(dx)

If y=( log x )^(x) -x^(log x) ,then (dy)/(dx)=

If y = a ^(log ( 1+log x ) ) ,then ( dy)/(dX)

If y=e^(x) log (sin 2x), find (dy)/(dx) .

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=e^(log (x^(5)))," find"(dy)/(dx) .

If y=log (log ( log x)) ,then (dy)/(dx)

If y=sin(log x) then find (dy)/(dx)