To solve the differential equation \(3e^{x} \tan y \, dx + (1 - e^{x}) \sec^2 y \, dy = 0\) with the initial condition \(y = \frac{\pi}{4}\) when \(x = 1\), we will follow these steps:
### Step 1: Rearranging the Equation
We start by rearranging the given equation to isolate \(\frac{dy}{dx}\):
\[
3e^{x} \tan y \, dx + (1 - e^{x}) \sec^2 y \, dy = 0
\]
Rearranging gives:
\[
(1 - e^{x}) \sec^2 y \, dy = -3e^{x} \tan y \, dx
\]
Dividing both sides by \(dx\) and \((1 - e^{x}) \sec^2 y\):
\[
\frac{dy}{dx} = -\frac{3e^{x} \tan y}{1 - e^{x}} \sec^2 y
\]
### Step 2: Separating Variables
Next, we separate the variables \(y\) and \(x\):
\[
\frac{\sec^2 y}{\tan y} \, dy = -\frac{3e^{x}}{1 - e^{x}} \, dx
\]
### Step 3: Integrating Both Sides
Now we integrate both sides. The left side can be simplified:
\[
\int \frac{\sec^2 y}{\tan y} \, dy = \int \frac{1}{\sin y \cos y} \, dy = \int \csc y \, dy
\]
The integral of \(\csc y\) is:
\[
\int \csc y \, dy = -\ln |\csc y + \cot y| + C_1
\]
For the right side, we have:
\[
\int -\frac{3e^{x}}{1 - e^{x}} \, dx
\]
To integrate this, we can use substitution. Let \(u = 1 - e^{x}\), then \(du = -e^{x} \, dx\), or \(dx = -\frac{du}{e^{x}} = -\frac{du}{1 - u}\).
Thus, the integral becomes:
\[
\int \frac{3}{u} \, du = 3 \ln |u| + C_2 = 3 \ln |1 - e^{x}| + C_2
\]
### Step 4: Combining the Results
Combining the results from both integrals, we have:
\[
-\ln |\csc y + \cot y| = 3 \ln |1 - e^{x}| + C
\]
### Step 5: Applying Initial Conditions
Now we apply the initial condition \(y = \frac{\pi}{4}\) when \(x = 1\):
First, calculate \(\csc\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right)\):
\[
\csc\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \cot\left(\frac{\pi}{4}\right) = 1 \implies \csc\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) = \sqrt{2} + 1
\]
Now, substituting \(x = 1\):
\[
1 - e^{1} = 1 - e
\]
Thus, we have:
\[
-\ln |\sqrt{2} + 1| = 3 \ln |1 - e| + C
\]
### Step 6: Solving for \(C\)
From the equation above, we can solve for \(C\):
\[
C = -\ln |\sqrt{2} + 1| - 3 \ln |1 - e|
\]
### Final Solution
The final implicit solution of the differential equation is:
\[
-\ln |\csc y + \cot y| = 3 \ln |1 - e^{x}| - \ln |\sqrt{2} + 1| - 3 \ln |1 - e|
\]