Home
Class 12
MATHS
Solve the following differential equatio...

Solve the following differential equations
`3e^(x) tan y dx +(1-e^(x)) sec^2y dy=0" given that "y= (pi)/(4), " when "x=1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(3e^{x} \tan y \, dx + (1 - e^{x}) \sec^2 y \, dy = 0\) with the initial condition \(y = \frac{\pi}{4}\) when \(x = 1\), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation to isolate \(\frac{dy}{dx}\): \[ 3e^{x} \tan y \, dx + (1 - e^{x}) \sec^2 y \, dy = 0 \] Rearranging gives: \[ (1 - e^{x}) \sec^2 y \, dy = -3e^{x} \tan y \, dx \] Dividing both sides by \(dx\) and \((1 - e^{x}) \sec^2 y\): \[ \frac{dy}{dx} = -\frac{3e^{x} \tan y}{1 - e^{x}} \sec^2 y \] ### Step 2: Separating Variables Next, we separate the variables \(y\) and \(x\): \[ \frac{\sec^2 y}{\tan y} \, dy = -\frac{3e^{x}}{1 - e^{x}} \, dx \] ### Step 3: Integrating Both Sides Now we integrate both sides. The left side can be simplified: \[ \int \frac{\sec^2 y}{\tan y} \, dy = \int \frac{1}{\sin y \cos y} \, dy = \int \csc y \, dy \] The integral of \(\csc y\) is: \[ \int \csc y \, dy = -\ln |\csc y + \cot y| + C_1 \] For the right side, we have: \[ \int -\frac{3e^{x}}{1 - e^{x}} \, dx \] To integrate this, we can use substitution. Let \(u = 1 - e^{x}\), then \(du = -e^{x} \, dx\), or \(dx = -\frac{du}{e^{x}} = -\frac{du}{1 - u}\). Thus, the integral becomes: \[ \int \frac{3}{u} \, du = 3 \ln |u| + C_2 = 3 \ln |1 - e^{x}| + C_2 \] ### Step 4: Combining the Results Combining the results from both integrals, we have: \[ -\ln |\csc y + \cot y| = 3 \ln |1 - e^{x}| + C \] ### Step 5: Applying Initial Conditions Now we apply the initial condition \(y = \frac{\pi}{4}\) when \(x = 1\): First, calculate \(\csc\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right)\): \[ \csc\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \cot\left(\frac{\pi}{4}\right) = 1 \implies \csc\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) = \sqrt{2} + 1 \] Now, substituting \(x = 1\): \[ 1 - e^{1} = 1 - e \] Thus, we have: \[ -\ln |\sqrt{2} + 1| = 3 \ln |1 - e| + C \] ### Step 6: Solving for \(C\) From the equation above, we can solve for \(C\): \[ C = -\ln |\sqrt{2} + 1| - 3 \ln |1 - e| \] ### Final Solution The final implicit solution of the differential equation is: \[ -\ln |\csc y + \cot y| = 3 \ln |1 - e^{x}| - \ln |\sqrt{2} + 1| - 3 \ln |1 - e| \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|52 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos

Similar Questions

Explore conceptually related problems

Solve the following differential equation: 3e^(x)tan ydx+(2-e^(x))sec^(2)ydy=0, given that when x=0,y=(pi)/(4)

Solve the differential equation e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0

Solve the following differential equation. (1) e^(x) tan^(2)y dx + (e^(x) -1) sec^(2) y dy = 0

Solve each of the following differential equations tan x tan y dx + sec^2x sec^2 y dy=0 .

Solve the following differential equation: (dy)/(dx)-y tan x=e^(x)sec x

Solve the following differential equation: y(1+e^(x))dy=(y+1)e^(x)dx

Solve the following differential equation. (dy)/(dx)=e^(x+y)

Solve the following differential equation (dy)/(dx)=e^(x+y)-1

Solve the following differential equation: y sec^(2)x+(y+7)tan x(dy)/(dx)=0

Solve the following differential equations: (dy)/(dx)+1=e^(x+y)