Home
Class 12
MATHS
If 0ltalpha,betaltpi and cos alpha+cos b...

If `0ltalpha,betaltpi` and `cos alpha+cos beta -cos(alpha+beta)=(3)/(2)`, then the value of `sqrt3 sin alpha+cos alpha` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{3} \sin \alpha + \cos \alpha \) given the equation: \[ \cos \alpha + \cos \beta - \cos(\alpha + \beta) = \frac{3}{2} \] ### Step 1: Use the cosine addition formula We start by using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting this into the given equation: \[ \cos \alpha + \cos \beta - (\cos \alpha \cos \beta - \sin \alpha \sin \beta) = \frac{3}{2} \] This simplifies to: \[ \cos \alpha + \cos \beta - \cos \alpha \cos \beta + \sin \alpha \sin \beta = \frac{3}{2} \] ### Step 2: Rearranging the equation Rearranging gives us: \[ \cos \alpha + \cos \beta + \sin \alpha \sin \beta - \cos \alpha \cos \beta = \frac{3}{2} \] ### Step 3: Use the identity for cosine and sine We can use the identity \( \sin^2 x + \cos^2 x = 1 \) to express the equation in terms of a single variable. Let's denote \( \alpha = \beta \) (as a potential solution) to simplify our calculations: \[ \cos \alpha + \cos \alpha - \cos(2\alpha) = \frac{3}{2} \] Using the double angle formula \( \cos(2\alpha) = 2\cos^2(\alpha) - 1 \): \[ 2\cos \alpha - (2\cos^2 \alpha - 1) = \frac{3}{2} \] This simplifies to: \[ 2\cos \alpha - 2\cos^2 \alpha + 1 = \frac{3}{2} \] ### Step 4: Rearranging further Rearranging gives: \[ -2\cos^2 \alpha + 2\cos \alpha + 1 - \frac{3}{2} = 0 \] This leads to: \[ -2\cos^2 \alpha + 2\cos \alpha - \frac{1}{2} = 0 \] Multiplying through by -1 to simplify: \[ 2\cos^2 \alpha - 2\cos \alpha + \frac{1}{2} = 0 \] ### Step 5: Solving the quadratic equation Now we can multiply the entire equation by 2 to eliminate the fraction: \[ 4\cos^2 \alpha - 4\cos \alpha + 1 = 0 \] Using the quadratic formula \( \cos \alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 4, b = -4, c = 1 \): \[ \cos \alpha = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \] Calculating the discriminant: \[ \sqrt{16 - 16} = 0 \] Thus: \[ \cos \alpha = \frac{4}{8} = \frac{1}{2} \] ### Step 6: Finding sin alpha Since \( \cos \alpha = \frac{1}{2} \), we can find \( \sin \alpha \): Using \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \sin^2 \alpha + \left(\frac{1}{2}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{1}{4} = 1 \] \[ \sin^2 \alpha = \frac{3}{4} \] \[ \sin \alpha = \frac{\sqrt{3}}{2} \] ### Step 7: Substitute to find the final value Now we substitute back to find \( \sqrt{3} \sin \alpha + \cos \alpha \): \[ \sqrt{3} \sin \alpha + \cos \alpha = \sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{3}{2} + \frac{1}{2} = \frac{4}{2} = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

cos alpha+cos beta-cos(alpha+beta)=(3)/(2) then show that alpha=beta=(pi)/(3)

If sin alpha sin beta-cos alpha cos beta+1=0, then the value of 1+cot alpha tan beta is

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

if alpha and beta satisfy sin alpha cos beta=-(1)/(2), then the greatest value of 2cos alpha sin beta is

If alpha+beta=90^@ and alpha=2beta , then the value of 3cos^2alpha-2sin^2beta is equal to:

If alpha and beta satisfy sin alpha cos beta=-((1)/(2)), then the greatest value of 2cos alpha sin beta is

NTA MOCK TESTS-NTA JEE MOCK TEST 55-MATHEMATICS
  1. A stationary balloon is observed from three points A, B and C on the p...

    Text Solution

    |

  2. The number of solutions of the equation sin^(-1)x=(sinx)^(-1) is/are

    Text Solution

    |

  3. The mean of n observation is barX. If the first observation is increas...

    Text Solution

    |

  4. If the normal at P(18, 12) to the parabola y^(2)=8x cuts it again at Q...

    Text Solution

    |

  5. If f:R rarrR is a function, then f is

    Text Solution

    |

  6. The possible value of the ordered triplet (a, b, c) such that the func...

    Text Solution

    |

  7. If the line y=x+c touches the hyperbola (x^(2))/(9)-(y^(2))/(5)=1 at t...

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx)=(y^(2)+xlnx)/(2xy)...

    Text Solution

    |

  9. The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the con...

    Text Solution

    |

  10. A random variable X follows binomial probability distribution with pro...

    Text Solution

    |

  11. Equation of the plane passing through the point (1, -1, 3), parallel t...

    Text Solution

    |

  12. If the system of equations x+y+z=6, x+2y+lambdaz=10 and x+2y+3z=mu has...

    Text Solution

    |

  13. The number of five digit numbers that contains 7 exactly once is equal...

    Text Solution

    |

  14. The points (-2, -1), (1, 0), (4, 3) and (1, 2) are

    Text Solution

    |

  15. The value of a such that the area bounded by the curve y=x^(2)+2ax+3a^...

    Text Solution

    |

  16. Number of common points to the curves C(1){(-1+2cos alpha, 2 sin alpha...

    Text Solution

    |

  17. If the magnitude of the projection of the vector hati-hatj+2hatk on th...

    Text Solution

    |

  18. The value of int(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal...

    Text Solution

    |

  19. If f:R rarr R is a function such that f(5x)+f(5x+1)+f(5x+2)=0, AA x in...

    Text Solution

    |

  20. If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2), ...

    Text Solution

    |