Home
Class 12
MATHS
If the range of f(x)=tan^(1)x+2sin^(-1)x...

If the range of `f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x` is `[a, b]`, then

A

`a=(pi)/(4)`

B

`a=-(pi)/(2)`

C

`b=(5pi)/(4)`

D

`b=(3pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \tan^{-1}(x) + 2\sin^{-1}(x) + \cos^{-1}(x) \), we will follow these steps: ### Step 1: Determine the Domain The function consists of three parts: \( \tan^{-1}(x) \), \( \sin^{-1}(x) \), and \( \cos^{-1}(x) \). - The domain of \( \tan^{-1}(x) \) is \( x \in \mathbb{R} \). - The domain of \( \sin^{-1}(x) \) and \( \cos^{-1}(x) \) is \( x \in [-1, 1] \). Thus, the overall domain of \( f(x) \) is \( x \in [-1, 1] \). **Hint:** Check the individual domains of each component function to find the overall domain. ### Step 2: Rewrite the Function We can manipulate the function to simplify it. We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can rewrite \( f(x) \): \[ f(x) = \tan^{-1}(x) + 2\sin^{-1}(x) + \cos^{-1}(x) = \tan^{-1}(x) + \sin^{-1}(x) + \frac{\pi}{2} \] **Hint:** Use known identities to simplify the function. ### Step 3: Analyze the Behavior of the Function Since \( f(x) \) is expressed as the sum of \( \tan^{-1}(x) \) and \( \sin^{-1}(x) \) (both of which are increasing functions), \( f(x) \) itself is an increasing function over the interval \( [-1, 1] \). **Hint:** Understand how the monotonicity of the component functions affects the overall function. ### Step 4: Calculate the Endpoints To find the range, we need to evaluate \( f(x) \) at the endpoints of the domain: 1. **At \( x = -1 \)**: \[ f(-1) = \tan^{-1}(-1) + 2\sin^{-1}(-1) + \cos^{-1}(-1) \] - \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - \( \sin^{-1}(-1) = -\frac{\pi}{2} \) - \( \cos^{-1}(-1) = \pi \) Thus, \[ f(-1) = -\frac{\pi}{4} + 2(-\frac{\pi}{2}) + \pi = -\frac{\pi}{4} - \pi + \pi = -\frac{\pi}{4} \] 2. **At \( x = 1 \)**: \[ f(1) = \tan^{-1}(1) + 2\sin^{-1}(1) + \cos^{-1}(1) \] - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \sin^{-1}(1) = \frac{\pi}{2} \) - \( \cos^{-1}(1) = 0 \) Thus, \[ f(1) = \frac{\pi}{4} + 2(\frac{\pi}{2}) + 0 = \frac{\pi}{4} + \pi = \frac{5\pi}{4} \] **Hint:** Evaluate the function at the endpoints to find the minimum and maximum values. ### Step 5: Determine the Range Since \( f(x) \) is increasing on the interval \( [-1, 1] \), the range of \( f(x) \) is from \( f(-1) \) to \( f(1) \): \[ \text{Range} = \left[-\frac{\pi}{4}, \frac{5\pi}{4}\right] \] Thus, we conclude: - \( a = -\frac{\pi}{4} \) - \( b = \frac{5\pi}{4} \) **Final Answer:** The range of \( f(x) \) is \( \left[-\frac{\pi}{4}, \frac{5\pi}{4}\right] \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 63

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 65

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)x

Range of f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x is

The range of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x is

Range of sin^(-1)x-cos^(-1)x is

Find the range of f(x)=sin^(2)x-sin x+1

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 64-MATHEMATICS
  1. Let ABCD be a quadrilateral in which AB is parallel to CD and perpendi...

    Text Solution

    |

  2. If the mean of a set of observations x(1),x(2), …,x(n)" is " bar(X), t...

    Text Solution

    |

  3. If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b], then

    Text Solution

    |

  4. The tops of two poles of height 40 m and 25 m are connected by a wire....

    Text Solution

    |

  5. The equation of the image of line y=x wire respect to the line mirror ...

    Text Solution

    |

  6. The value of lim(xrarroo)[(1^((1)/(x))+2^((1)/(x))+3^((1)/(x))+…+10^((...

    Text Solution

    |

  7. Two mutually perpendicular tangents of the parabola y^(2)=4ax at the p...

    Text Solution

    |

  8. If int(0)^(1)x^(11)e^(-x^(24))dx=A, and int(0)^(1)x^(3)e^(-x^(8))dx=B,...

    Text Solution

    |

  9. Consider a square matrix A or order 2 which has its elements as 0, 1, ...

    Text Solution

    |

  10. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  11. Consider the line L-=(x-1)/(2)=(y+2)/(3)=(z-7)/(6). Point P(2, -5, 0) ...

    Text Solution

    |

  12. If three fair dice are thrown and the sum is an odd number, then the p...

    Text Solution

    |

  13. If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C,...

    Text Solution

    |

  14. The locus of the mid - points of the parallel chords with slope m of t...

    Text Solution

    |

  15. If y=mx+5 is a tangent to x^(3)y^(3)=ax^(3)+by^(3) at point (1, 2), th...

    Text Solution

    |

  16. The differential equation (dy)/(dx)=(sqrt(1-y^(2)))/(y) represents the...

    Text Solution

    |

  17. If (3+cot80^(@)cot 20^(@))/(cot80^(@)+cot20^(@))=tan.(pi)/(k), then th...

    Text Solution

    |

  18. If z is a complex number, then the area of the triangle (in sq. units)...

    Text Solution

    |

  19. A point (alpha, beta, gamma) satisfies the equation of the plane 3x+4y...

    Text Solution

    |

  20. The value fo the integral I=int(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is...

    Text Solution

    |