Home
Class 12
MATHS
" 3.If "|z-1|=|z-5|" and "Re(z)=k;" then...

" 3.If "|z-1|=|z-5|" and "Re(z)=k;" then evaluate "k

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|=|z-5| and |z|=sqrt13 ,then find |Im(z)|

If |z-1| = |z-5| and |z|=sqrt(13) then find |Im(z)|

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z-3| = "min" {|z-1|,|z-5|} , then Re(z) equals to

If |z+1+3i|=1 ,then the least value of |z| is sqrt(k)+m ,then evaluate sqrt(k-m)

If |z-2-3i|=1 ,then the greatest value of |z| is sqrt(k)+m, then evaluate sqrt((k+m)+2)

Let z_(1) and z_(2) be two given complex numbers. The locus of z such that {:("Column -I", " Column -II"),( "(A) " |z-z_(1)|+|z-z_(2)| = " constant =k, where " k ne|z_(1)-z_(2)|, " (p) Circle with " z_(1) and z_(2) " as the vertices of diameter"),("(B)" |z-z_(1)|- |z-z_(2)|= " k where " k ne |z_(1)-z_(2)| ," (q) Circle "),("(C)"arg((z-z_(1))/(z-z_(2)))=+- pi/2 , " (r) Hyperbola "),("(D) If "omega" lies on " |omega| = 1 " then " 2007/omega " lies on " , " (s) Ellipse"):}

If |z^(2)|=2Re(z) then the locus of z is

If k+|k+z^(2)|=|z|^(2)(k in R^(-)), then possible argument of z is