Home
Class 12
MATHS
For three non-coplanar vectors bara,barb...

For three non-coplanar vectors `bara,barb,barc` the relation `|(bara times barb).barc|=|bara||barb||barc|` holds true , if

A

`barb.barc=barc.bara=0`

B

`bara.barb=barb.barc=0`

C

`bara.barb=barb.barc=barc.bara=0`

D

`barc.bara=bara.barb=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given relation involving three non-coplanar vectors \(\mathbf{a}\), \(\mathbf{b}\), and \(\mathbf{c}\): \[ |\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}| \] ### Step-by-Step Solution: 1. **Understanding the Left Side**: The left side of the equation is the absolute value of the dot product of \(\mathbf{c}\) with the cross product \(\mathbf{a} \times \mathbf{b}\). The magnitude of the cross product \(\mathbf{a} \times \mathbf{b}\) is given by: \[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin \theta \] where \(\theta\) is the angle between vectors \(\mathbf{a}\) and \(\mathbf{b}\). 2. **Dot Product with \(\mathbf{c}\)**: The dot product of \(\mathbf{c}\) with \(\mathbf{a} \times \mathbf{b}\) can be expressed as: \[ |\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}| = |\mathbf{a} \times \mathbf{b}||\mathbf{c}|\cos \phi \] where \(\phi\) is the angle between the vector \(\mathbf{c}\) and the vector \(\mathbf{a} \times \mathbf{b}\). 3. **Equating Both Sides**: Now we can equate both expressions: \[ |\mathbf{a}||\mathbf{b}|\sin \theta |\mathbf{c}|\cos \phi = |\mathbf{a}||\mathbf{b}||\mathbf{c}| \] 4. **Simplifying the Equation**: Dividing both sides by \(|\mathbf{a}||\mathbf{b}||\mathbf{c}|\) (assuming none of them are zero), we get: \[ \sin \theta \cos \phi = 1 \] 5. **Analyzing the Result**: The equation \(\sin \theta \cos \phi = 1\) can only hold true if: - \(\sin \theta = 1\) (which means \(\theta = 90^\circ\)) - \(\cos \phi = 1\) (which means \(\phi = 0^\circ\)) Since \(\theta = 90^\circ\), vectors \(\mathbf{a}\) and \(\mathbf{b}\) are perpendicular. Since \(\phi = 0^\circ\), vector \(\mathbf{c}\) must be parallel to the vector \(\mathbf{a} \times \mathbf{b}\). 6. **Conclusion**: Therefore, for the relation to hold true, we conclude that: \[ \mathbf{a} \cdot \mathbf{b} = 0 \quad \text{and} \quad \mathbf{b} \cdot \mathbf{c} = 0 \] This means that \(\mathbf{b}\) is perpendicular to both \(\mathbf{a}\) and \(\mathbf{c}\). ### Final Answer: The relation holds true if \(\mathbf{a} \cdot \mathbf{b} = 0\) and \(\mathbf{b} \cdot \mathbf{c} = 0\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|49 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

For any vectors bara,barb,barc correct statement is

(bara+barb).(barb+barc)xx(bara+barb+barc)=

If bara,barb,barc are three non-coplanar vectors and barp,barq,barr are defined by the relations barp=(barbxxbarc)/(bara barb barc),barq=(barcxxbara)/(bara barb barc),barr=(baraxxbarb)/(bara barb barc) then (bara+barb).barp+(barb+barc).barq+(barc+bara).barr=

IF bara times barb = barc and barb times barc=bara then

If bara, barb,barc are non-coplanar vectors, then (bara+barb+barc).(bara+barb)xx(bara+barc)=

If bara,barb,barc are non -coplanar unit vectors such that bara times (barb times barc)=((barb+barc))/sqrt2, barb and barc are non parallel then prove that angle between bara and barb is 3pi//4

If vectors bara,barb,barc are non-coplaner, then ( [ bara+2barb barb+2barc barc+2bara ] )//( [ bara barb barc ] ) =

Let bara,barb and barc be non-zero vectors such that (bara times barb)times barc=1/3|barb||barc|bara . If theta is the obtuse angle between the vectors barb and barc then sin theta equals

If bara,barb and barc are three non-coplanar vectors, then : (bara + barb + barc) · [(bara + barb) xx (bara + barc)] =

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II
  1. ABCD is a rhombus IF M,N,P are points taken on sides AB,BC,CD respecti...

    Text Solution

    |

  2. Three points having position vectors bara,barb and barc will be collin...

    Text Solution

    |

  3. IF bara,barb,barc and bard are any four vectors then (bara times barb)...

    Text Solution

    |

  4. A line passes through the points whose position vectors are hati+hatj-...

    Text Solution

    |

  5. IF barx times barb=barc times barb and barx . bara =0 then barx=

    Text Solution

    |

  6. IF |bara|=4,|barb|=2 and the angle between bara and barb is pi/6 then ...

    Text Solution

    |

  7. The position vectors of the vertices A, B and C of a tetrahedron ABCD ...

    Text Solution

    |

  8. If vec(DA)=veca,vec(AB)=vecb and vec(CB)=kveca where kgt0 and X,Y are ...

    Text Solution

    |

  9. If barc=bara times barb and barb=barc times bara then

    Text Solution

    |

  10. If bara,barb and barc are non coplanar vectors such that barb times ba...

    Text Solution

    |

  11. The position vectors of the vertices, A,B,C of a tetrahedron ABCD are ...

    Text Solution

    |

  12. Let bara,barb and barc are three mutually perpendicular unit vectors a...

    Text Solution

    |

  13. Let veca = hati + hatj + hatk and let vecr be a variable vector such t...

    Text Solution

    |

  14. Let barlamda=bara times (barb +barc), barmu=barb times (barc+bara) and...

    Text Solution

    |

  15. Let bara,barb,barc be three coplanar unit vectors such that bara+barb+...

    Text Solution

    |

  16. For three non-coplanar vectors bara,barb,barc the relation |(bara time...

    Text Solution

    |

  17. If bara=hati+hatj+hatk , bara.barb=2 and bara times barb=2hati+hatj-3h...

    Text Solution

    |

  18. Let bara.barb and barc are three unit vectors such that |bara+barb+bar...

    Text Solution

    |