Home
Class 12
MATHS
Let y=(a sin x+(b+c)cosx)e^(x+d) where a...

Let `y=(a sin x+(b+c)cosx)e^(x+d)` where a, b, c, d are parameters. The order of the differential equation formed after elimintion of parameter is ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the order of the differential equation formed after the elimination of the parameters \( a, b, c, d \) from the given function: \[ y = (a \sin x + (b+c) \cos x) e^{(x+d)} \] ### Step 1: Differentiate \( y \) with respect to \( x \) To find the differential equation, we first differentiate \( y \): \[ y' = \frac{dy}{dx} \] Using the product rule, we differentiate \( y \): \[ y' = \frac{d}{dx}[(a \sin x + (b+c) \cos x) e^{(x+d)}] \] Let \( u = a \sin x + (b+c) \cos x \) and \( v = e^{(x+d)} \). Using the product rule \( (uv)' = u'v + uv' \): 1. Differentiate \( u \): \[ u' = a \cos x - (b+c) \sin x \] 2. Differentiate \( v \): \[ v' = e^{(x+d)} \quad \text{(since the derivative of } e^{(x+d)} \text{ is itself)} \] Now applying the product rule: \[ y' = (a \cos x - (b+c) \sin x)e^{(x+d)} + (a \sin x + (b+c) \cos x)e^{(x+d)} \] ### Step 2: Simplify \( y' \) Combining the terms: \[ y' = e^{(x+d)} \left( a \cos x - (b+c) \sin x + a \sin x + (b+c) \cos x \right) \] ### Step 3: Differentiate \( y' \) to find \( y'' \) Now we differentiate \( y' \) again to find \( y'' \): \[ y'' = \frac{d}{dx}[y'] \] Using the product rule again: \[ y'' = \frac{d}{dx}[e^{(x+d)}(a \cos x + (b+c) \cos x - (b+c) \sin x + a \sin x)] \] This will involve differentiating both \( e^{(x+d)} \) and the combined trigonometric terms. ### Step 4: Form the differential equation After differentiating \( y \) and \( y' \), we can express \( y'' \) in terms of \( y \), \( y' \), and possibly other derivatives. The goal is to eliminate the parameters \( a, b, c, d \). ### Step 5: Determine the order of the differential equation The highest derivative we calculated is \( y'' \), which indicates that the order of the differential equation is 2. ### Conclusion Thus, the order of the differential equation formed after the elimination of the parameters is: \[ \text{Order of the differential equation} = 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION - I)|39 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let y = (a sin x+ (b +c) cos x ) e ^(x+d), where a,b,c and d are parameters represent a family of curves, then differential equation for the given family of curves is given by y'' -alpha y'+betay=0, then alpha+ beta =

The differential equation of y= 2be^(ax) (a & b are parameters) is

The order of the differential equation of family of curves ln (ay)=be^(x)+c is (where a,b,c are paramete

Differential equation of x^2= 4b(y + b) , where b is a parameter, is

Form the differential equation corresponding to y^(2)=a(b-x)(b+x) by eliminating parameters a and b

Find the order of the differential equation corresponding to y=Ae^(x)+Be^(2x)+Ce^(3x)(A,B,C being parameters) is a solution

Find the order of the differential equation of the family of curves. y=asinx+bcos(x+c) , where a,b,c are parameters.

Order of differential equation whose solution is y=cx+c^(2)-3c^(3/2)+2, where c is a parameter is

if y=a sin (log x) + b cos (log x ) , then the differential equation without the parameter a and b is

FIITJEE-TIPS-NUMERICAL BASED QUESTIONS
  1. If alpha is a the absolute maximum value of the expression (3x^(2)+2x-...

    Text Solution

    |

  2. The value of (8sqrt2)/(pi)int(0)^(1)((1-x^(2))/(1+x^(2)))(dx)/(sqrt(1+...

    Text Solution

    |

  3. The value of lim(xrarr0)(16-16 cos (1-cos x))/(x^(4)) is

    Text Solution

    |

  4. The value of lim(xrarrpi//2)12 tan^(2)x[sqrt(6+3 sin x-2cos^(2)x)-sqrt...

    Text Solution

    |

  5. f(x)=sqrt(x-1)+sqrt(2-x)andg(x)=x^(2)+bx+c are two given functions suc...

    Text Solution

    |

  6. If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR ...

    Text Solution

    |

  7. If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f...

    Text Solution

    |

  8. The value of f(0) so that the function f(x)=(1)/(x)-(1)/(sinx) is cont...

    Text Solution

    |

  9. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  10. Find the area enclosed by the curves max(|x+y|,|x-y|)=1

    Text Solution

    |

  11. The number of points at which the function, f (x)={{:(min {|x|"," x ...

    Text Solution

    |

  12. f(x)=[x] and g(x)={{:(1",",x gt1),(2",", x le 1):}, (where [.] represe...

    Text Solution

    |

  13. underset(xto1)lim[cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the...

    Text Solution

    |

  14. int(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

    Text Solution

    |

  15. Period of function 2^({x})+sin 2pix+3^({x//2)}+cos 2pix, (where {x} de...

    Text Solution

    |

  16. Let y=(a sin x+(b+c)cosx)e^(x+d) where a, b, c, d are parameters. The ...

    Text Solution

    |

  17. lim(n->oo)(n^(alpha)sin^2n !)/(n+1), 0ltalphalt1, is equal to :

    Text Solution

    |

  18. If f(x) ge 0 for all x in [0,10] and int(2)^(8) f(x)=0, then f(7) is

    Text Solution

    |

  19. The area of quadrilateral combined equation of whose sides are (x^(2...

    Text Solution

    |

  20. The number of points of non differentiability of y=|log|x|| are

    Text Solution

    |