Home
Class 9
MATHS
आक्रति 9.16 में में , P समांतर चतुर...

आक्रति 9.16 में में , P समांतर चतुर्भुज ABCD के अभ्यंतर में स्थित कोई बिंदु है । दर्शाइए कि
(i) `ar (APB) +ar(PCD)=(1)/(2) ar (ABCD)`
(ii) `ar(APD)+ar (PBC)=ar (APB)+Ar(PCD)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Fig.9.16,P is a point in the interior of a parallelogram ABCD.Show that (i) ar(APB)+ar(PCD)=(1)/(2)ar(ABCD)(ii)ar(APD)+ar(PBC)=ar(APB)+ar(PCD)

IN the figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar(APB) + ar(PCD) = 1/2 ar (ABCD) (ii) ar (APD) + ar(PBC) = ar(APB) + ar (PCD)

In P is a point in the interior of a parallelogram ABCD. Show that (ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

In the adjacent figure P is a point inside the parallelogram ABCD. Prove that ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

If ABCD is a parallelogram,the prove that ar(ABD)=ar(BCD)=ar(ABC)=ar(ACD)=1/2ar(||^(gm)ABCD)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

In the figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar (triangleAPB)+ar(trianglePCD=1/2ar(ABCD) (ii) ar (triangleAPD)+ar(trianglePBC)=ar(triangleAPB)+ar(trianglePCD)

In, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that (i)ar (ACB) = ar (ACF) (ii)ar (AEDF) = ar(ABCDE)