Home
Class 12
MATHS
If |x| lt 1, then 1/2 log ((1+x)/(1-x)) ...

If `|x| lt 1,` then `1/2` log `((1+x)/(1-x))` =

A

tanh x

B

`"Sinh"^(-1) x`

C

`"Cosh"^(-1)x`

D

`"Tanh"^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 1|3 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 2|4 Videos
  • HYPERBOLIC FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 {SPECIAL TYPE QUESTIONS} SET - 4|3 Videos
  • Hyperbola

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET 4|4 Videos
  • INDEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SET-4)|4 Videos

Similar Questions

Explore conceptually related problems

If |x| lt 1 then (1)/(2) log_(e)((1+x)/(1-x)) =

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

Lt_(x to 1)x^((1)/(1-x))=

If f(x) = 1 + x + x^(2) + …… for |x| lt 1 then show that f^(-1)(x) = (x-1)/(x) .

int (log (1+(1)/(x)))/(x(1+x))dx=

Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then x=(1)/(7) Reason (R ) : If |x| lt 1 , then x+(x^(2))/(2)+(x^(3))/(3)+…..oo=log((1)/(1-x))

If |x| lt 1" thn "underset(n to oo)"Lt "(1+x)(1+x^(2))(1+x^(4))....(1+x^(2n))=

If xgt0 then log(1+x)-(2x)/(1+x) is

If x lt -1," then "2tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=