Home
Class 11
MATHS
" If "omega" is a cube root of unity,the...

" If "omega" is a cube root of unity,then "|[x+1,omega,omega^(2)],[omega,x+omega^(2),1],[omega^(2),1,x+omega]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unit, then Delta=|(x+1,omega, omega^(2)),(omega, x+omega^(2),1),(omega^(2),1,x+omega)|=

If omega is a cube root of unity then the value of |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| is -

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is the cube root of unity then {:abs((1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)):} is