Home
Class 12
MATHS
If A=[[-1, 1],[ 0,-2]] , then prove tha...

If `A=[[-1, 1],[ 0,-2]]` , then prove that `A^2+3A+2I=Odot` Hence, find `Ba n dC` matrices of order 2 with integer elements, if `A=B^3+C^3dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[-1,10,-2]], then prove that A^(2)+3A+2I=O. Hence,find BandC matrices of order 2 with integer elements,if A=B^(3)+C^(3)

Let A=[[0,1],[0,0]] , prove that: (aI+bA)^n = a^(n-1) bA , where I is the unit matrix of order 2 and n is a positive integer.

If A=[0100], prove that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is a unit matrix of order 2 and n is a positive integer.

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

If A=[[2,3] , [0,1]] and B=[[3,4] , [2,1]] then prove that (AB)'=B'A'

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

If A ,Ba n dC three matrices of the same order, then prove that A=B rArr A+C=B+C

If A = [{:(5,3),(-1,-2):}], "show that" " "A^(2)-3A-7I_(2)=0_(2). Hence find A^(-1) .