Home
Class 8
MATHS
Factorise: 3z ^(2) - 10z + 8...

Factorise:
`3z ^(2) - 10z + 8`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(3z^2 - 10z + 8\), follow these steps: ### Step 1: Identify the coefficients The expression is in the form \(az^2 + bz + c\), where: - \(a = 3\) (coefficient of \(z^2\)) - \(b = -10\) (coefficient of \(z\)) - \(c = 8\) (constant term) ### Step 2: Multiply \(a\) and \(c\) Multiply the coefficient of \(z^2\) (which is \(3\)) by the constant term (which is \(8\)): \[ 3 \times 8 = 24 \] ### Step 3: Find two numbers that multiply to \(24\) and add to \(-10\) We need to find two numbers that multiply to \(24\) and add to \(-10\). The two numbers are: \[ -6 \text{ and } -4 \] because: \[ -6 \times -4 = 24 \quad \text{and} \quad -6 + (-4) = -10 \] ### Step 4: Rewrite the middle term Rewrite the expression \(3z^2 - 10z + 8\) using the two numbers found: \[ 3z^2 - 6z - 4z + 8 \] ### Step 5: Group the terms Group the terms in pairs: \[ (3z^2 - 6z) + (-4z + 8) \] ### Step 6: Factor out the common factors in each group Factor out the common factors from each group: \[ 3z(z - 2) - 4(z - 2) \] ### Step 7: Factor out the common binomial Now, notice that \((z - 2)\) is common in both terms: \[ (3z - 4)(z - 2) \] ### Final Answer Thus, the factorised form of \(3z^2 - 10z + 8\) is: \[ (3z - 4)(z - 2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7E|20 Videos
  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7C|19 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Factorise: z ^(2) - 12z- 45

Factorise: z ^(2) +19z-150

Factorise: z ^(2) + 12z+27

Factorise: 3x^(2) + 10 x + 8

Factorise: 3 + 23z - 8z^(2)

(a) Factorise : x^(2) - (z-5)x - 5z (b) Factorise : x^(2) + x - y + y^(2) - 2xy

4z ^(2)- 8z + 3= ?

Factorise x^(2)-(y-z)^(2) .

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorise y^(2) + 2xy + 2 xz - z^(2) .