Home
Class 12
MATHS
[" If "f(x)" is integrable on "[0,a]" th...

[" If "f(x)" is integrable on "[0,a]" then the value "],[qquad [a],[" of "_(0)(f(x))/(f(x)+f(a-x))dx]" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=

int_(0)^(a) (f(x)+f(-x))dx=

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

If int_(0)^(a)(g(x))/(f(x)+f(a-x))dx=0 , then

If f(x) is integrable on [0,a], then int_0^(a) (f(x))/(f(x)+ f(a-x)) dx =

The value of the integral int_0^(2a) (f(x))/(f(x) + f(2a - x)) is :

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Prove that the value of the integral, int_(0)^(2a)(f(x))/(f(x)+f(2a-x))dx is equal to a.

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to