Home
Class 12
MATHS
5^(log(a)pi)+5u^(log(a)5)=3...

5^(log_(a)pi)+5u^(log_(a)5)=3

Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate 7^(log g_(3)5) + 3 ^(log_(5)7 ) - 5 ^(log_(3)7) - 7 ^(log_(5)3)

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

The value of x satisfying the equation root(3)(5)^(log_(5)5^(log_(5)5^(log_(5)5^(log_(5)((x)/(2)) = 3, is