Home
Class 11
PHYSICS
Is the relation vec(F) = vec(ma) applica...

Is the relation `vec(F) = vec(ma)` applicable to motion of a rocket?

Promotional Banner

Topper's Solved these Questions

  • NEWTON'S LAWS OF MOTION

    CHHAYA PUBLICATION|Exercise SHORT ANSWER TYPE QUESTION-II|5 Videos
  • NEWTON'S LAWS OF MOTION

    CHHAYA PUBLICATION|Exercise PROBLEM SET - I|18 Videos
  • NEWTON'S LAWS OF MOTION

    CHHAYA PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTIONS|15 Videos
  • NATURE OF VIBRATION

    CHHAYA PUBLICATION|Exercise EXERCISE (CBSE SCANNER)|2 Videos
  • NEWTONIAN GRAVITATION AND PLANETARY MOTION

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|19 Videos

Similar Questions

Explore conceptually related problems

What is the vector relation of linear acceleration vec(a) and angular acceleration (vec(alpha)) ?

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = |vec(a) xx vec(b)|, then find the angle the vectors vec(a) and vec (b)

Two vectors vec(a) and vec (b) are such that |vec(a).vec(b)| = |vec(a) xx vec(b)| , then find the angle between the vectors vec(a) and vec(b) .

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

If non-zero vectors vec a and vec b are equally inclined to coplanar vector vec c , then vec c can be a. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+| vec b|) vec b b. (| vec b|)/(| vec a|+| vec b|)a+(| vec a|)/(| vec a|+| vec b|) vec b c. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+2| vec b|) vec b d. (| vec b|)/(2| vec a|+| vec b|)a+(| vec a|)/(2| vec a|+| vec b|) vec b

Distance of the point P( vec p) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

f vec(a) is any vector , then -

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/((vec b- vec a).(vec d- vec a)) + (| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/((vec b- vec c).( vec d- vec c))=0dot