Home
Class 12
MATHS
If i=sqrt(-1), then (i^(n)+i^(-n), n in ...

If `i=sqrt(-1)`, then `(i^(n)+i^(-n), n in Z)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-i)^n = 2^n , then n is equal to

If n is an odd integer, i= sqrt -1 then [ (1 + i)^(6n) + (1 - i)^(6n) ] is equal to

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

(1+i)^(2 n)+(1-i)^(2 n), n in z is

If i= sqrt-1 and n is a positive integer , then i^(n) + i^(n + 1) + i^(n + 2) + i^(n + 3) is equal to