Home
Class 10
MATHS
2[sin^(6)theta+cos^(6)theta]-3[sin^(4)+c...

2[sin^(6)theta+cos^(6)theta]-3[sin^(4)+cos^(4)]+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0 .

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)

Evaluate : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+4(sin^(2)theta+cos^(2)theta)

The value of the expression 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)-(sin^(2)theta+cos^(2)theta)^(2)