Home
Class 12
MATHS
f(x)=|x|^(-n-1)," then "f(-pi/4)=...

f(x)=|x|^(-n-1)," then "f(-pi/4)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|sinx|) then f^1(-pi/4) is equal to

If f(x)=(|x|)^(|sin|), then f'((-pi)/(4)) is-

If f(x)=(a-x^(n))^(1 / n) , then f(f(x)) =

f:N to N, where f(x)=x-(-1)^(x) , Then f is

f:N to N, where f(x)=x-(-1)^(x) , Then f is

If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

If f(x) is continuous at x=(pi)/(4) where f(x)=(2sqrt(2)-(cos x+sin x)^(3))/(1-sin2x) ,for x!=(pi)/(4) then f((pi)/(4))=

A real valued function, f(x) , f:(0,(pi)/(2))rarr R^+ satisfies the differential equation xf'(x)=1+f(x){x^(2)f(x)-1} and f((pi)/(4))=(4)/(pi) , then lim_(x rarr0)f(x) , is

If f(x) is continuous at x=pi/4 , where f(x)=(1-tanx)/(1-sqrt(2)sin x) , for x!= pi/4 , then f(pi/4)=

If f(x) is continuous at x=pi/4 , where f(x)=(1-tanx)/(1-sqrt(2)sin x) , for x!= pi/4 , then f(pi/4)=