Home
Class 12
MATHS
int (3-x^(2))/(1-2x+x^(2))e^(x)dx=e^(x)f...

`int (3-x^(2))/(1-2x+x^(2))e^(x)dx=e^(x)f(x)+c rArr f(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

int Sin^(-1)((2x)/(1+x^(2)))dx=f(x)-log (1+x^(2))+c rArr f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If int(x^(2)-x+1)/((x^(2)+1)^((3)/(2)))e^(x)dx=e^(x)f(x)+c, then f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1)f(x) has two points of extrema