Home
Class 11
MATHS
If bar(a) and bar(b) are two unit vector...

If `bar(a)` and `bar(b)` are two unit vectors perpendicular to each other and `bar(c)=lambda_1 bar(a)+lambda_2bar(b)+lambda_(3)(bar(a)timesbar(b))` ,then which of the following is (are) true?
`(A) lambda_(1)=bar(a).bar(c) (B) lambda_(2)=|bar(b)timesbar(a)|`
` (C) lambda_(3)=|(bar(a)timesbar(b))timesbar(c)| (D) lambda_(1)+lambda_(2)+lambda_(3)=(bar(a)+bar(b)+bar(a)timesbar(b)).bar(c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b) are vectors perpendicular to each other and |bar(a)|=2,|bar(b)|=3, bar(c)timesbar(a)=b, then the least value of 2|bar(c)-bar(a)|" is

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If bar(a) and bar(c) are unit parallel vectors |bar(b)|=6 then bar(b)-3bar(c)=lambdabar(a) if lambda

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

If bar(c)=3bar(a)+4bar(b) and 2bar(C)=bar(a)-3bar(b) then which of the following are incorrect (A) bar(c) and bar(a) have same direction (B) bar(c) and bar(b) have same direction (C) |bar(c)|>|bar(a)| (D) |bar(b)|>|bar(c)|

(bar(a)times(bar(b)+bar(c))+bar(b)times(bar(c)+bar(a))+bar(c)times(bar(a)+bar(b)))*(bar(a)timesbar(b))|= (A) |bar(b)timesbar(c)| (B) |bar(c)timesbar(a)| (C) |bar(a)timesbar(b)+bar(b)timesbar(c)+(bar(c)timesbar(a))| (D) 0

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=