Home
Class 12
MATHS
int(-1)^(3)(tan^(-1)((x^(2)+1)/(x))+tan^...

int_(-1)^(3)(tan^(-1)((x^(2)+1)/(x))+tan^(-1)((x)/(1+x^(2))))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x(tan^(-1)x)^(2)dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int tan^(-1)((1)/(1-x+x^(2)))dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int_(0)^(x)tan^(-1)(1-x+x^(2))dx