Home
Class 14
MATHS
If 5sin^(2)theta+3cos^(2)theta=4. Find t...

If `5sin^(2)theta+3cos^(2)theta=4`. Find the value of `sin theta and cos theta`:

A

`pm(1)/(sqrt2), pm(1)/(sqrt2)`

B

`pm(sqrt3)/(2),pmsqrt2`

C

`(sqrt3)/(2),(1)/(sqrt2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(5\sin^2\theta + 3\cos^2\theta = 4\) and find the values of \(\sin\theta\) and \(\cos\theta\), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know that: \[ \sin^2\theta + \cos^2\theta = 1 \] From this, we can express \(\cos^2\theta\) in terms of \(\sin^2\theta\): \[ \cos^2\theta = 1 - \sin^2\theta \] ### Step 2: Substitute \(\cos^2\theta\) in the Original Equation Substituting \(\cos^2\theta\) into the original equation gives: \[ 5\sin^2\theta + 3(1 - \sin^2\theta) = 4 \] ### Step 3: Simplify the Equation Now, simplify the equation: \[ 5\sin^2\theta + 3 - 3\sin^2\theta = 4 \] Combine like terms: \[ (5\sin^2\theta - 3\sin^2\theta) + 3 = 4 \] This simplifies to: \[ 2\sin^2\theta + 3 = 4 \] ### Step 4: Isolate \(\sin^2\theta\) Now, isolate \(\sin^2\theta\): \[ 2\sin^2\theta = 4 - 3 \] \[ 2\sin^2\theta = 1 \] \[ \sin^2\theta = \frac{1}{2} \] ### Step 5: Find \(\sin\theta\) Taking the square root of both sides gives: \[ \sin\theta = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] ### Step 6: Find \(\cos\theta\) Now, we can find \(\cos^2\theta\) using the Pythagorean identity: \[ \cos^2\theta = 1 - \sin^2\theta = 1 - \frac{1}{2} = \frac{1}{2} \] Taking the square root gives: \[ \cos\theta = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] ### Final Answer Thus, the values of \(\sin\theta\) and \(\cos\theta\) are: \[ \sin\theta = \pm \frac{\sqrt{2}}{2}, \quad \cos\theta = \pm \frac{\sqrt{2}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.3|15 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If 3 sin theta + 4 cos theta =5 , then value of sin theta is

If sin theta+cos theta=(5)/(4) then find the value of sin^(6)theta+cos^(6)theta+7sin^(2)theta*cos^(2)theta

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

If sin theta+sin^(2)theta=1 find the value of cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta+2cos^(4)theta+2cos^(2)theta-2

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If sec theta=cos^(2)theta then find the value of sin^(4)theta+2sin^(3)theta+sin^(2)theta