Home
Class 11
MATHS
What is ""^(n-1)P(r )+ ""^(n-1)P(r-1) ?...

What is `""^(n-1)P_(r )+ ""^(n-1)P_(r-1)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( {}^{n-1}P_r + {}^{n-1}P_{r-1} \), we will use the properties of permutations. ### Step-by-Step Solution: 1. **Understand the Permutation Notation**: The notation \( {}^{n}P_{r} \) represents the number of ways to choose \( r \) objects from \( n \) distinct objects and arrange them. It is given by the formula: \[ {}^{n}P_{r} = \frac{n!}{(n-r)!} \] 2. **Write the Given Expression**: We have the expression: \[ {}^{n-1}P_r + {}^{n-1}P_{r-1} \] 3. **Substitute the Permutation Formula**: Now, we can substitute the formula for permutations: \[ {}^{n-1}P_r = \frac{(n-1)!}{(n-1-r)!} \] \[ {}^{n-1}P_{r-1} = \frac{(n-1)!}{(n-1-(r-1))!} = \frac{(n-1)!}{(n-r)!} \] 4. **Combine the Two Terms**: Now we can write the expression as: \[ {}^{n-1}P_r + {}^{n-1}P_{r-1} = \frac{(n-1)!}{(n-1-r)!} + \frac{(n-1)!}{(n-r)!} \] 5. **Factor Out Common Terms**: Notice that \( (n-1)! \) is common in both terms: \[ = (n-1)! \left( \frac{1}{(n-1-r)!} + \frac{1}{(n-r)!} \right) \] 6. **Simplify the Expression Inside the Parentheses**: To combine the fractions, we need a common denominator: \[ = (n-1)! \left( \frac{(n-r) + 1}{(n-1-r)!(n-r)} \right) \] This simplifies to: \[ = (n-1)! \cdot \frac{n-r}{(n-1-r)!(n-r)} = \frac{n!}{(n-r)!} \] 7. **Final Result**: Therefore, we have: \[ {}^{n-1}P_r + {}^{n-1}P_{r-1} = {}^{n}P_r \] ### Conclusion: Thus, the final answer is: \[ {}^{n-1}P_r + {}^{n-1}P_{r-1} = {}^{n}P_r \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Revision Exercise|22 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: (i) ""^(n)P_(n)=""^(n)P_(n-1) " (ii) "^(n)P_(r)=n* ""^(n-1)P_(r-1) " (iii) "^(n-1)P_(r)+r* ""^(n-1)P_(r-1)=""^(n)P_(r)

If show that "^(n-1)P_r = (n-r).^(n-1)P_(r-1)

Prove that ""^(n)P_(r )= ""^(n)C_(r )*^rP_(r ) .

(n-1)P_(r)+r.(n-1)P_(n-1) is equal to

Find 'r' if : (i) ""^(5)P_(r )= ""^(6)P_(r-1) (ii) 5""^(4)P_(r )=6""^(5)P_(r-1) (iii) ""^(5)P_(r )=2""^(6)P_(r-1) (iv) ""^(10)P_(r+1): ""^(11)P_(r )=30 :11 .

(n-1)P_(r)+r.n-1)P_(n-1) is equal to

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)