Home
Class 11
MATHS
Evalute (n!)/((n-r)!). when n=20 and r=2...

Evalute `(n!)/((n-r)!)`. when `n=20` and `r=2`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\frac{n!}{(n-r)!}\) when \(n=20\) and \(r=2\), we can follow these steps: ### Step 1: Identify the values of \(n\) and \(r\) We are given: - \(n = 20\) - \(r = 2\) ### Step 2: Substitute the values into the expression We need to evaluate: \[ \frac{n!}{(n-r)!} = \frac{20!}{(20-2)!} = \frac{20!}{18!} \] ### Step 3: Simplify the factorial expression Using the property of factorials, we can express \(20!\) as: \[ 20! = 20 \times 19 \times 18! \] Thus, we can rewrite our expression: \[ \frac{20!}{18!} = \frac{20 \times 19 \times 18!}{18!} \] ### Step 4: Cancel out the common terms The \(18!\) in the numerator and denominator cancels out: \[ \frac{20 \times 19 \times 18!}{18!} = 20 \times 19 \] ### Step 5: Calculate the final result Now, we compute: \[ 20 \times 19 = 380 \] ### Final Answer: The value of \(\frac{n!}{(n-r)!}\) when \(n=20\) and \(r=2\) is \(380\). ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate (n!)/((n-r)!) when n=7 and r=2

Evaluate (n!)/((n-r)!) when n = 12 and r = 3.

Evaluate (n!)/(r!(n-r)!) when n=5,r=2

Evaluate : (n!)/((n-r)!) where n=5,r=2

Evaluate (n!)/((n-r)!) , when (i) n = 6, r = 2 (ii) n = 9, r = 5

Evaluate (n!)/((n-r)!) when (i) n=6,r=2n=9,r=5

Evaluate (n!)/((r!)xx(n-r)!) , when n = 15 and r = 12.

Evaluate (n!)/((n-r)!) , when : (i) n=6, r=2 (ii) n=9, r=5

Evaluate (n!)/(r!(n-r)!) when : (i) n=6, r=2 (ii) n=7, r=4 (iii) n=15, r=12 .

Evaluate (n!)/((n-r)!) when : (i) n=10,r=4 (ii) r = 1 (iii) r = 2.