Home
Class 12
MATHS
If int (1)/(f(x))dx=log [ f(x)]^(2)+c, t...

If `int (1)/(f(x))dx=log [ f(x)]^(2)+c`, then f(x) is equal to:

A

`2x+alpha`

B

`(x)/(2)+alpha`

C

`x+alpha`

D

`x^(2)+alpha`.

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise MCQs Multiple Choice Questions Level-II|20 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise Latest Questions From AIEEE/JEE Examinations|5 Videos
  • HYPERBOLA

    MODERN PUBLICATION|Exercise Recent Competitive Questions|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos

Similar Questions

Explore conceptually related problems

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

If int e^(x)(1+x)sec^(2)(xe^(x))dx = f(x) +c then f(x) equal to

int (f^(')(x))/(f(x) log [f(x)]) dx =

If f(x)=log ((1+x)/(1-x)) , then

If f(x) = f(a - x) , then int_0^(a) xf(x) dx is equal to :

If int (sqrt(1+3sqrt(x)))/(x^(2//3))dx=2f(x)^(3//2)+c , then f(x)equals :

int (1+xtanx)^(-2) dx = 1/(x+f(x))+c then f(x) =

int_(a+c)^(b+c) f(x) dx is equal to :