Home
Class 9
MATHS
[" If "x=log(3)log(2)log(2)256," then "2...

[" If "x=log_(3)log_(2)log_(2)256," then "2^(log_(4)2^(2x))=],[[" (a) "4," (b) "8],[" (c) "2," (d) "1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = log_(3) log_(2) log_(2) 256, "then" 2^(log_(4)2^(2^(x)) = _______

Simplify (1)/(log_(2)log_(2)log_(2)256) .

If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

Prove that log_(2)log_(2)log_(4)256+2log_(sqrt2)2=5

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)

If log_(3)x + log_(3)y =2 + log_(3)2 and log_(3)(x+y) =2 , then

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to