Home
Class 14
MATHS
If 4x = sec theta and (4)/(x) = tan thet...

If `4x = sec theta` and `(4)/(x) = tan theta` then `8 (x^(2) - (1)/(x^(2)))` is

A

`1/16`

B

`1/8`

C

`1/2`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations**: \[ 4x = \sec \theta \] \[ \frac{4}{x} = \tan \theta \] 2. **Using the Identity**: We know the trigonometric identity: \[ \sec^2 \theta - \tan^2 \theta = 1 \] We will substitute the values of \(\sec \theta\) and \(\tan \theta\) from the equations above. 3. **Substituting Values**: Substitute \(\sec \theta = 4x\) and \(\tan \theta = \frac{4}{x}\) into the identity: \[ (4x)^2 - \left(\frac{4}{x}\right)^2 = 1 \] 4. **Expanding the Squares**: Calculate the squares: \[ 16x^2 - \frac{16}{x^2} = 1 \] 5. **Rearranging the Equation**: To isolate \(x^2 - \frac{1}{x^2}\), we can rearrange the equation: \[ 16x^2 - \frac{16}{x^2} = 1 \] Factor out 16: \[ 16\left(x^2 - \frac{1}{x^2}\right) = 1 \] 6. **Dividing by 16**: Divide both sides by 16: \[ x^2 - \frac{1}{x^2} = \frac{1}{16} \] 7. **Finding \(8\left(x^2 - \frac{1}{x^2}\right)\)**: Now, we need to find \(8\left(x^2 - \frac{1}{x^2}\right)\): \[ 8\left(x^2 - \frac{1}{x^2}\right) = 8 \cdot \frac{1}{16} = \frac{8}{16} = \frac{1}{2} \] 8. **Final Result**: Thus, the value of \(8\left(x^2 - \frac{1}{x^2}\right)\) is: \[ \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5x=sec theta and (5)/(x)=tan theta, find the value of 5(x^(2)-(1)/(x^(2)))

If 4x=cos ec theta and (8)/(x)=cot theta then find the value of 4(x^(2)-(4)/(x^(2)))

If x=a sec theta and y=b tan theta find (x^(2))/(a^(2))-(y^(2))/(b^(2))

If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(2)) " at " theta = (pi)/(4) is

if x = a sec theta + b tan theta y = b sec theta + a tan theta then x^(2) - y^(2) is equal to

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

If sec theta=4x and tan theta=4/x , (x ne 0) then the value of 8(x^2-1/x^2) is: यदि sec theta=4x और tan theta=4/x , है जहाँ (x ne 0) है, तो 8(x^2-1/x^2) का मान ज्ञात करें |

If sec theta=4x and tan theta=4/x, (x ne 0) then the value of 8(x^2-1/x^2) is: अगर sec theta=4x और tan theta=4/x, (x ne 0) है, तो 8(x^2-1/x^2) का मान होगा:

If sec theta= 8x and tan theta= 8/x, (x ne 0) then the value of 16(x^2-1/x^2) is:

If sec theta+tan theta=x, then tan theta=(x^(2)+1)/(x) (b) (x^(2)-1)/(x)( c) (x^(2)+1)/(2x) (d) (x^(2)-1)/(2x)