Home
Class 14
MATHS
If sin^(2)alpha=cos^(2)alpha , then the ...

If `sin^(2)alpha=cos^(2)alpha` , then the value of `(cot^(6)alpha-cot^(2)alpha)` is

A

1

B

0

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given**: \( \sin^2 \alpha = \cos^2 \alpha \) 2. **Using the Pythagorean Identity**: We know that \( \sin^2 \alpha + \cos^2 \alpha = 1 \). Since \( \sin^2 \alpha = \cos^2 \alpha \), we can denote \( \sin^2 \alpha = x \). Therefore, we have: \[ x + x = 1 \implies 2x = 1 \implies x = \frac{1}{2} \] Thus, \( \sin^2 \alpha = \cos^2 \alpha = \frac{1}{2} \). 3. **Finding \( \cot^2 \alpha \)**: We know that: \[ \cot^2 \alpha = \frac{\cos^2 \alpha}{\sin^2 \alpha} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1 \] 4. **Calculating \( \cot^6 \alpha - \cot^2 \alpha \)**: Now we can substitute \( \cot^2 \alpha \) into the expression: \[ \cot^6 \alpha = (\cot^2 \alpha)^3 = 1^3 = 1 \] Therefore, we have: \[ \cot^6 \alpha - \cot^2 \alpha = 1 - 1 = 0 \] 5. **Final Answer**: The value of \( \cot^6 \alpha - \cot^2 \alpha \) is \( 0 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1+sin^(2)alpha =3 sin alpha cos alpha , then values of cot alpha are

if tan alpha+cot alpha=p then find the value of a.tan^(2)alpha+cot^(2)alpha b.tan^(3)alpha+cot^(3)alpha

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

The expression tan^(2)alpha+cot^(2)alpha is

If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is

If sin^2 theta + sin^2 alpha =1 , then what is the value of cot (theta+alpha) ?

Expression tan^(2)alpha + cot^(2)alpha is:

If 1+sin^(2)alpha=3sin alpha cos alpha , then values of cot alpha are (a) -1,1, (b) 0,1, (c) 1,2, (1) -1,1