Home
Class 12
MATHS
[" If "int(sin x)^(1)t^(2)*f(t)dt=1-sin ...

[" If "int_(sin x)^(1)t^(2)*f(t)dt=1-sin x,AA x in(0,(pi)/(2))" then the "],[" value of "((1)/(sqrt(3)))" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Ifint_(sin x)^(1)t^(2)f(t)dt=1-sin x, wherex in(0,(pi)/(2)) then find the value of f((1)/(sqrt(3)))

If int_(cos x)^(1)t^(2)f(t)dt=1-cos x AA x in(0,(pi)/(2)) then the value of [f((sqrt(3))/(4))] is

Let g(x) be differentiable on R and int_( sin t)^(1)x^(2)g(x)dx=(1-sin t), where t in(0,(pi)/(2)). Then the value of g((1)/(sqrt(2))) is

If int_(sinx)^(1) t^(2)f(t)dt=1-sinx " for all " x in [0,pi//2] , then f((1)/(sqrt(3)))=

If int_(sin x)^(1) t^2 f(t) dt = 1 - sin x , then the value of f(1/(sqrt3)) is :

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then