Home
Class 14
MATHS
If log(100)x =-1/2, then the value of x ...

If `log_(100)x =-1/2`, then the value of x is:

A

0.001

B

`1/10`

C

1.0E-5

D

`10^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{100} x = -\frac{1}{2} \), we can follow these steps: ### Step 1: Rewrite the logarithmic equation in exponential form The logarithmic equation \( \log_{b} a = c \) can be rewritten in exponential form as \( a = b^c \). In this case, we have: \[ x = 100^{-\frac{1}{2}} \] ### Step 2: Simplify the expression Next, we simplify \( 100^{-\frac{1}{2}} \). The negative exponent indicates that we take the reciprocal: \[ 100^{-\frac{1}{2}} = \frac{1}{100^{\frac{1}{2}}} \] ### Step 3: Calculate \( 100^{\frac{1}{2}} \) The expression \( 100^{\frac{1}{2}} \) represents the square root of 100: \[ 100^{\frac{1}{2}} = \sqrt{100} = 10 \] ### Step 4: Substitute back to find \( x \) Now we substitute back into our expression for \( x \): \[ x = \frac{1}{10} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{1}{10}} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log_(100) x=-4 , then the value of x is:

If log_(2) log_(10)4x=1 , then the value of x is:

If log_(x)(0.1)=-(1)/(3), then the value of x is a.10 b.100 c.1000 d.(1)/(1000)

log_(2)x=-log_((1)/(2))7, then the value of x is

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

If log_(x)y=100backslash and log_(2)x=10, then the value of y is a.2^(10) b.2^(100) c.2^(1000) d.2^(10000)