Home
Class 14
MATHS
Find the value of (3^(2))^(5log(3)x):...

Find the value of `(3^(2))^(5log_(3)x)`:

A

`10^(x)`

B

`x^(4)`

C

10x

D

`x^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (3^2)^{5 \log_3 x} \), we can follow these steps: ### Step 1: Simplify the expression using the power of a power property Using the property of exponents that states \( (a^m)^n = a^{m \cdot n} \), we can rewrite the expression: \[ (3^2)^{5 \log_3 x} = 3^{2 \cdot (5 \log_3 x)} \] ### Step 2: Multiply the exponents Now, we simplify the exponent: \[ 2 \cdot (5 \log_3 x) = 10 \log_3 x \] So, we can rewrite the expression as: \[ 3^{10 \log_3 x} \] ### Step 3: Apply the property of logarithms Using the property of logarithms that states \( a^{\log_a b} = b \), we can simplify further: \[ 3^{10 \log_3 x} = (3^{\log_3 x})^{10} \] ### Step 4: Simplify \( 3^{\log_3 x} \) From the property mentioned above, we know that \( 3^{\log_3 x} = x \). Therefore, we have: \[ (3^{\log_3 x})^{10} = x^{10} \] ### Final Result Thus, the value of \( (3^2)^{5 \log_3 x} \) is: \[ x^{10} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2log_(9)3) .

Find the value of log_(3^(2))5^(4)xxlog_(5^(2))3^(4) .

Find the value of 3^(2+log_3 5)

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Find the value of x,5^(log_(3)x^(2))-x-6=0

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Find the value of log_(2)[log_(2){log_(3)(log_(3)27^(3))}]

If x=log_(3)4 and y=log_(5)3, find the value of log_(3)10 and log_(3)backslash(6)/(5) in terms of x and y.

Find the value of S=log_(2)4+log_(8)2+2^(log_(2)3)+3^(log_(5)4)-4^(log_(5)3)

ARIHANT SSC-LOGARITHM -EXERCISE LEVEL 1
  1. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  2. If log(10)x^(2) -log(10)sqrt(y) =1, find the value of y, when x=2

    Text Solution

    |

  3. Find the value of (3^(2))^(5log(3)x):

    Text Solution

    |

  4. Find the value of (y^(3))^(-2 log(y)8) is:

    Text Solution

    |

  5. log 12900 is equal to

    Text Solution

    |

  6. log 0.786 is equal to:

    Text Solution

    |

  7. If log(5)x =y, then 5^(5y) is equal to

    Text Solution

    |

  8. If A= log(13) 189 and B = log(23)521, then which one of the following ...

    Text Solution

    |

  9. If A=(log(3) 2187)/5 and B = log(243) 2187, then which of the followin...

    Text Solution

    |

  10. If (150)^(x) =7, then x is equal to:

    Text Solution

    |

  11. The value of x satisfying the following relation: log(1//2)x = log(2...

    Text Solution

    |

  12. If log(2)(x+y) =3 and log(2)x + log(2)y =2 + log(z)3 then the values o...

    Text Solution

    |

  13. The set of all the solution of the equation log(5)x log(6)x log(7)x ...

    Text Solution

    |

  14. The value of (log(3)54)/(log(486)3) - (log(3)1458)/(log(18)3) is:

    Text Solution

    |

  15. The number of solution of log(9)(2x-5) = log(3) (x-4) is:

    Text Solution

    |

  16. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  17. If 1 , logy , x , logz , y , -15 logx z are in A.P. , then which is co...

    Text Solution

    |

  18. If log(x)a,a^(x//2) and log(a)x are in G.P, then x is equal to:

    Text Solution

    |

  19. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  20. The value of 1/(log(100)n) + 1/(log(99)n) + 1/(log(98)n) +……..+1/(log(...

    Text Solution

    |