Home
Class 14
MATHS
If log(3)2, log(3)(2^(x)-5) and log(3)(2...

If `log_(3)2, log_(3)(2^(x)-5)` and `log_(3)(2^(x)-7//2)` are in AP then x is equal to:

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( x \) such that the logarithmic expressions \( \log_3 2 \), \( \log_3 (2^x - 5) \), and \( \log_3 \left( \frac{2^x - 7}{2} \right) \) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Understanding AP Condition**: For three terms \( A \), \( B \), and \( C \) to be in AP, the condition is: \[ 2B = A + C \] Here, let: - \( A = \log_3 2 \) - \( B = \log_3 (2^x - 5) \) - \( C = \log_3 \left( \frac{2^x - 7}{2} \right) \) 2. **Applying the AP Condition**: Substitute \( A \), \( B \), and \( C \) into the AP condition: \[ 2 \log_3 (2^x - 5) = \log_3 2 + \log_3 \left( \frac{2^x - 7}{2} \right) \] 3. **Using Logarithmic Properties**: The property of logarithms states that \( \log_a b + \log_a c = \log_a (bc) \). Thus, we can rewrite \( C \): \[ \log_3 2 + \log_3 \left( \frac{2^x - 7}{2} \right) = \log_3 \left( 2 \cdot \frac{2^x - 7}{2} \right) = \log_3 (2^x - 7) \] So, we have: \[ 2 \log_3 (2^x - 5) = \log_3 (2^x - 7) \] 4. **Exponentiating Both Sides**: To eliminate the logarithm, we exponentiate both sides: \[ (2^x - 5)^2 = 2^x - 7 \] 5. **Expanding and Rearranging**: Expanding the left side: \[ 2^{2x} - 10 \cdot 2^x + 25 = 2^x - 7 \] Rearranging gives: \[ 2^{2x} - 11 \cdot 2^x + 32 = 0 \] 6. **Substituting for Simplicity**: Let \( t = 2^x \). The equation becomes: \[ t^2 - 11t + 32 = 0 \] 7. **Factoring the Quadratic**: We can factor this quadratic: \[ (t - 4)(t - 8) = 0 \] Thus, \( t = 4 \) or \( t = 8 \). 8. **Finding Values of \( x \)**: Recall \( t = 2^x \): - If \( t = 4 \), then \( 2^x = 4 \) implies \( x = 2 \). - If \( t = 8 \), then \( 2^x = 8 \) implies \( x = 3 \). 9. **Checking Validity**: We need to ensure that both values of \( x \) satisfy the original logarithmic expressions: - For \( x = 2 \): \[ \log_3 (2^2 - 5) = \log_3 (-1) \quad \text{(not valid)} \] - For \( x = 3 \): \[ \log_3 (2^3 - 5) = \log_3 (3) \quad \text{(valid)} \] \[ \log_3 \left( \frac{2^3 - 7}{2} \right) = \log_3 \left( \frac{1}{2} \right) \quad \text{(valid)} \] Thus, the only valid solution is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in A.P, determine the value of x.

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log_(10)(2),log_(10)(2^(x)+1),log_(10)(2^(x)-3) are in A.P then x is equal to (i)log_(2)(5)( ii) log_(2)(-1) (iii) log_(2)((1)/(5))( iv) log_(5)(2)

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.

If log_(3)(2),log_(3)(2^(x)-5),log_(3)(2^(x)-(7)/(2)) are in A.P.Determine the value of x.

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.(1991,4M)

If log_(5)2,log_(5)(2^(x)-3) and log_(5)((17)/(2)+2^(x-1)) are in AP, then the value of x is

If log_(3)2,log_(3)(2^(x)-5),log_(3)(2^(x)-7/2) are in arithmetic progression, then the value of x is equal to

ARIHANT SSC-LOGARITHM -EXERCISE LEVEL 1
  1. The value of (log(3)54)/(log(486)3) - (log(3)1458)/(log(18)3) is:

    Text Solution

    |

  2. The number of solution of log(9)(2x-5) = log(3) (x-4) is:

    Text Solution

    |

  3. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  4. If 1 , logy , x , logz , y , -15 logx z are in A.P. , then which is co...

    Text Solution

    |

  5. If log(x)a,a^(x//2) and log(a)x are in G.P, then x is equal to:

    Text Solution

    |

  6. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  7. The value of 1/(log(100)n) + 1/(log(99)n) + 1/(log(98)n) +……..+1/(log(...

    Text Solution

    |

  8. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  9. x^(log (5)x) gt 5 implies:

    Text Solution

    |

  10. Find x, if log x^(3) - log 3x =2 log 2 + log 3,

    Text Solution

    |

  11. If x satisfies log(S)(2x+3) lt log(s)7, then x lies in:

    Text Solution

    |

  12. log(2)sqrt(x)+log(2)sqrt(x)=4

    Text Solution

    |

  13. For a positive real x(x gt 1), which one of the following correct?

    Text Solution

    |

  14. For x in N, x gt 1, if P=log(x)(x+1) and Q = log(x+1) (x+2) then which...

    Text Solution

    |

  15. If a= 1+ log(x) yz, b=1 + log(y)zx and c=1 +log(z)xy, the ab+bc +ca is...

    Text Solution

    |

  16. If xy^(2) = 4 and log(3) (log(2) x) + log(1//3) (log(1//2) y)=1 , then...

    Text Solution

    |

  17. Find x if log(1//sqrt(2)) (1//sqrt(8)) = log(2)(4^(x) +1). Log(4^(x+1)...

    Text Solution

    |

  18. The value of x satisfying log(3)4 -2 log(3)sqrt(3x +1) =1 - log(3)(5...

    Text Solution

    |

  19. The solution set of |3-4x| gt 2 is:

    Text Solution

    |

  20. Solve the following equation for x and y log(100)|x+y| = 1/2, log(10...

    Text Solution

    |