Home
Class 10
MATHS
We can write log"" x/y = log (x.y^(-1 ))...

We can write `log"" x/y = log (x.y^(-1 ))` Can you prove that `log"" x/y = log x - logy` using product and power rules.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

Prove that log_(a)xy=log_(a)x+log_(a)y.

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If x^2 + y^2 = 10xy , prove that 2 log (x + y) = log x + log y + 2 log 2 + log 3 .

Solve y log y dx + (x-log y) dy = 0.

If x^2+y^2=6xy, prove that 2log(x+y)=logx+logy+3log2

If x = log ( y + sqrt(y^2 -1)) then y =

If x^2+y^2=25xy. then prove that 2log(x+y)=3log3+logx+logy.

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

If x=log[y+sqrt(y^(2)-1)] , then y =