Home
Class 12
MATHS
The locus of the point (r cos alpha cos ...

The locus of the point `(r cos alpha cos beta, r cos alpha sin beta, r sin alpha)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point (r sec alpha cos beta, r sec alpha beta, r tan alpha) is

" Locus of the point ",[(r sec alpha*cos beta,r sec alpha*sin beta,r tan alpha) is"

Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) ]:} =0

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =0

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =1

Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) ]:} =0

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

(i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=