Home
Class 14
MATHS
[" 114."(sqrt(2)+sqrt(7-2sqrt(10)))" बरा...

[" 114."(sqrt(2)+sqrt(7-2sqrt(10)))" बराबर "(1)/(6)-],[[" (A) "sqrt(2)," (B) "sqrt(7)],[" (C) "sqrt(5)," (D) "2sqrt(5)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (1)/(3 - sqrt(8)) - (1)/(sqrt(8) - sqrt(7)) + (1)/(sqrt(7) - sqrt(6)) - (1)/(sqrt(6) - sqrt(5)) + (1)/(sqrt(5) - 2)

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

(i) 3sqrt(5) by 2sqrt(5) ,(ii) 6sqrt(15) by 4sqrt(3) , (iii) 2sqrt(6) by 3sqrt(3) (iv) 3sqrt(8) by 3sqrt(2) ,(v) sqrt(10) by sqrt(40) , (vi) 3sqrt(28) by 2sqrt(7)

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

(1)/(sqrt(11-2sqrt(30)))-(3)/(sqrt(7-2sqrt(10)))-(4)/(sqrt(8+4sqrt(3)))

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .