Home
Class 12
MATHS
" NE Ob" "2(9-1)/(5)+tan(1)/(4)=tan^(-1)...

" NE Ob" "2(9-1)/(5)+tan(1)/(4)=tan^(-1)(32)/(43)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)""(1)/(5)+tan^(-1)""(1)/(4)=tan^(-1)""(32)/(43)

Prove the following : 2"tan"^(-1)1/5+"tan"^(-1)1/4="tan"^(-1)32/43

tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)(1)/(2)

Prove that : 2 tan^-1(1/5) + tan^-1(1/4) = tan^-1(32/43)

2tan^(- 1)\ 1/5+tan^(- 1)\ 1/4=tan^(- 1)\ 32/43

Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3) .

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that 2tan^(-1) . 1/5 +tan^(-1). 1/4 = tan^(-1) . 32/43

2tan^(-1)backslash(1)/(5)+tan^(-1)backslash(1)/(4)=tan^(-1)backslash(32)/(43)