Home
Class 11
MATHS
Express the result in the form x+iy, whe...

Express the result in the form x+iy, where x,y are real number `i=sqrt(-1)`:
(i) `(5+9i)-:(-3+4i)`
(ii) `[(sqrt(5)+(i)/(2))(sqrt(5)-2i)]-:(6+5i)`
(iii) `((1-i)(2-i)(3-i))/(1+i)`
(iv) `(1+3i)/((1-2i)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each part step by step to express the results in the form \( x + iy \), where \( x \) and \( y \) are real numbers. ### Part (i): \((5 + 9i) \div (-3 + 4i)\) 1. **Multiply by the conjugate**: \[ \frac{(5 + 9i)(-3 - 4i)}{(-3 + 4i)(-3 - 4i)} \] 2. **Calculate the denominator**: \[ (-3)^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] 3. **Calculate the numerator**: \[ (5)(-3) + (5)(-4i) + (9i)(-3) + (9i)(-4i) = -15 - 20i - 27i - 36(-1) = -15 - 47i + 36 = 21 - 47i \] 4. **Combine results**: \[ \frac{21 - 47i}{25} = \frac{21}{25} - \frac{47}{25}i \] 5. **Final result**: \[ x = \frac{21}{25}, \quad y = -\frac{47}{25} \] ### Part (ii): \(\left(\sqrt{5} + \frac{i}{2}\right)\left(\sqrt{5} - 2i\right) \div (6 + 5i)\) 1. **Multiply the numerators**: \[ \left(\sqrt{5} + \frac{i}{2}\right)\left(\sqrt{5} - 2i\right) = 5 - 2\sqrt{5}i + \frac{i\sqrt{5}}{2} - 2(-1) = 5 + 2 + \left(-2\sqrt{5} + \frac{\sqrt{5}}{2}\right)i \] 2. **Combine terms**: \[ 7 + \left(-2\sqrt{5} + \frac{\sqrt{5}}{2}\right)i = 7 - \frac{4\sqrt{5}}{2} + \frac{\sqrt{5}}{2} = 7 - \frac{3\sqrt{5}}{2}i \] 3. **Denominator**: \[ 6 + 5i \] 4. **Multiply by the conjugate**: \[ \frac{(7 - \frac{3\sqrt{5}}{2}i)(6 - 5i)}{(6 + 5i)(6 - 5i)} \] 5. **Calculate the denominator**: \[ 36 + 25 = 61 \] 6. **Calculate the numerator**: \[ 42 - 35i - 18\sqrt{5}i + \frac{15\sqrt{5}}{2} = 42 + \left(-35 - 18\sqrt{5}\right)i + \frac{15\sqrt{5}}{2} \] 7. **Final result**: \[ \frac{42 + \left(-35 - 18\sqrt{5}\right)i}{61} \] ### Part (iii): \(\frac{(1 - i)(2 - i)(3 - i)}{1 + i}\) 1. **Calculate the numerator**: \[ (1 - i)(2 - i) = 2 - 3i + i^2 = 2 - 3i - 1 = 1 - 3i \] \[ (1 - 3i)(3 - i) = 3 - i - 9i + 3i^2 = 3 - 10i - 3 = -10i \] 2. **Denominator**: \[ 1 + i \] 3. **Multiply by the conjugate**: \[ \frac{-10i(1 - i)}{(1 + i)(1 - i)} = \frac{-10i + 10}{1 + 1} = \frac{10 - 10i}{2} = 5 - 5i \] ### Part (iv): \(\frac{1 + 3i}{(1 - 2i)^2}\) 1. **Calculate the denominator**: \[ (1 - 2i)^2 = 1 - 4i + 4i^2 = 1 - 4i - 4 = -3 - 4i \] 2. **Multiply by the conjugate**: \[ \frac{(1 + 3i)(-3 + 4i)}{(-3 - 4i)(-3 + 4i)} = \frac{-3 + 4i - 9i + 12i^2}{9 + 16} = \frac{-3 - 12 + (-5)i}{25} = \frac{-15 - 5i}{25} \] 3. **Final result**: \[ -\frac{3}{5} - \frac{1}{5}i \] ### Summary of Results: 1. Part (i): \( \frac{21}{25} - \frac{47}{25}i \) 2. Part (ii): \( \frac{42}{61} + \left(-\frac{35 + 18\sqrt{5}}{61}\right)i \) 3. Part (iii): \( 5 - 5i \) 4. Part (iv): \( -\frac{3}{5} - \frac{1}{5}i \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (f) Short Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (-5+3i)(8-7i) (ii) (-sqrt(3)+sqrt(-2))(2sqrt(3)-i) (iii) (sqrt(2)-sqrt(3)i)^(2)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (5+sqrt(2)i)/(1-sqrt(2)i) (ii) (2+i)/((1+i)(1-2i)) .

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) 3i^(3)(15i^(6)) (ii) (2+7i)^(3) (iii) ((1)/(2)+2i)^(3)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (2-3i)/(4-i) (ii) (2+3i)/(-5-4i) (iii) (1+i)/(3+i) (iv) (3+2i)/(4-3i)

Perform the following by the indicated operations. Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : Simply: (i) (sqrt(5)+7i)(sqrt(5)-7i)^(3) (ii) (1+i)(2+3i)(3+4i)(4+5i) (iii) (1+i^(2))+i^(4)+i^(6) .

Perform the indicated operation and give your anwer in the form x+iy , where x and y are real numbers and i=sqrt(-1) : (i) ((1)/(2)+(1)/(4)i)(-(2)/(3)-(1)/(4)i) (ii) (5+2i)/(-1+sqrt(3)i) . (iii) (sqrt(5)-7i)(sqrt(5)-7i)^(2)+(-2+7i)^(2) .

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

sqrt(3i)+sqrt(-3i)=(i)+-2sqrt(3)(ii)+-sqrt(6)(iii)3(iv)3i

((x+iy)/(2+3i)+(2+i)/(2-3i)=(9)/(13)(1+i)

Express each of the following in the form (a + ib): (i)" "(i)/((1+i))" "(ii)" "(-1+sqrt(3)i)^(-1)" "(iii)" "(5+sqrt(2)i)/(1=sqrt(2)i)

MODERN PUBLICATION-COMPLEX NUMBERS-Exercise 5 (e) Short Answer Type Questions
  1. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  2. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  3. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  4. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  5. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  6. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  7. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  8. Compute: (i) sqrt(-49)(2+sqrt(-9)) (ii) [2+sqrt(-25)]-[3-sqrt(-16)]+...

    Text Solution

    |

  9. Find real q such that (3+2isintheta)/(1-2isintheta) is purely real.

    Text Solution

    |

  10. (a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii...

    Text Solution

    |

  11. Find the reciprocal of : (i) 7+sqrt(7)i (ii) i-5.

    Text Solution

    |

  12. Prove that: (i) z=overline(z) iff z is real (ii) z=-overline(z) if...

    Text Solution

    |

  13. Prove that: R(e)z=(z+overline(z))/(2),I(m)z=(z-overline(z))/(2i)

    Text Solution

    |

  14. Prove that: (i) the sum of a complex number and its conjugate is real ...

    Text Solution

    |

  15. Give an example to show that subtraction of complex number is not comm...

    Text Solution

    |

  16. Find the sum and product of the complex numbers -sqrt(3)+sqrt(-2) and ...

    Text Solution

    |

  17. If z(1),z(2) are respectively 1-i,-2+4i, find I(m){(z(1)z(2))/(z(1))}.

    Text Solution

    |

  18. Finid the vlues of x and y if: (i) (x+iy)(1+i)=1-i (ii) ((1+i)x-2i...

    Text Solution

    |

  19. If 1+4sqrt(3)i=(1+ib)^(2), prove that: a^(2)-b^(2)=1 and ab=2sqrt(3)...

    Text Solution

    |

  20. Show that if a,b,c,d in R, overline((a+ib)(c+id))=(a-ib)(c-id).

    Text Solution

    |