Home
Class 11
MATHS
Write the square of (i)/(1+i) in the for...

Write the square of `(i)/(1+i)` in the form x+iy.

Text Solution

AI Generated Solution

The correct Answer is:
To find the square of \(\frac{i}{1+i}\) in the form \(x + iy\), we will follow these steps: ### Step 1: Write the expression for squaring We start with the expression: \[ \left(\frac{i}{1+i}\right)^2 \] ### Step 2: Simplify the fraction First, we simplify \(\frac{i}{1+i}\). We can multiply the numerator and the denominator by the conjugate of the denominator, which is \(1-i\): \[ \frac{i(1-i)}{(1+i)(1-i)} \] ### Step 3: Calculate the denominator Now, we calculate the denominator: \[ (1+i)(1-i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] ### Step 4: Calculate the numerator Next, we calculate the numerator: \[ i(1-i) = i - i^2 = i - (-1) = i + 1 \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{i + 1}{2} = \frac{1}{2} + \frac{i}{2} \] ### Step 6: Square the simplified expression Now we need to square this result: \[ \left(\frac{1}{2} + \frac{i}{2}\right)^2 \] ### Step 7: Apply the formula for squaring a binomial Using the formula \((a+b)^2 = a^2 + 2ab + b^2\), where \(a = \frac{1}{2}\) and \(b = \frac{i}{2}\): \[ \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)\left(\frac{i}{2}\right) + \left(\frac{i}{2}\right)^2 \] ### Step 8: Calculate each term Calculating each term: 1. \(\left(\frac{1}{2}\right)^2 = \frac{1}{4}\) 2. \(2\left(\frac{1}{2}\right)\left(\frac{i}{2}\right) = \frac{1}{2}i\) 3. \(\left(\frac{i}{2}\right)^2 = \frac{i^2}{4} = \frac{-1}{4}\) ### Step 9: Combine the results Now, combine the results: \[ \frac{1}{4} + \frac{-1}{4} + \frac{1}{2}i = 0 + \frac{1}{2}i \] ### Final Result Thus, the square of \(\frac{i}{1+i}\) in the form \(x + iy\) is: \[ 0 + \frac{1}{2}i \] ### Summary In conclusion, we have: \[ x = 0, \quad y = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Express (2+i)^2/(2+3i) in the form x+iy.

Write the following in the form x+iy: (i) (2i)^(3) (ii) i^(-35) (iii) (-i)(2i)(-(1)/(8)i)^(3) .

Write the following in the form x+iy: i^(9)+i^(10)+i^(11)+i^(12) .

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .

Write the following in the form x+iy: (i) i+i^(2)+i^(3)+i^(4) (ii) i^(4)+i^(8)+i^(12)+i^(16) (iii) i+i^(5)+i^(9)+i^(13) (iv) i^(9)+i^(10)+i^(11)+i^(12) .

If the conjugate of (x+iy)(1-2i) be 1+i then:

In the following, perform the indicated operations and write the result in the form x+iy: i^(3)+(6+3i)-(20+5i)+(14+3i) .

In the following, perform the indicated operations and write the result in the form x+iy: sqrt(3)+(sqrt(3)-2i)-(3-2i)

Perform the indicated operations and write the result in the form x+iy: (i) (-3+2i)+(-6+3i) (ii) ((1)/(2)+(7)/(2)i)-(4+(5)/(2)i) (iii) (1-2i)-i+(4-7i)-2i+(5i+3) .