Home
Class 11
MATHS
Solve: (i) 27x^(2)-10x+1=0. (ii) 21x^(...

Solve: (i) `27x^(2)-10x+1=0`.
(ii) `21x^(2)-28x+10=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equations, we will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Part (i): Solve \(27x^2 - 10x + 1 = 0\) 1. Identify coefficients: - \(a = 27\) - \(b = -10\) - \(c = 1\) 2. Calculate the discriminant (\(D\)): \[ D = b^2 - 4ac = (-10)^2 - 4 \cdot 27 \cdot 1 = 100 - 108 = -8 \] 3. Since the discriminant is negative, we will have complex roots. Now, apply the quadratic formula: \[ x = \frac{-(-10) \pm \sqrt{-8}}{2 \cdot 27} = \frac{10 \pm \sqrt{-8}}{54} \] 4. Simplify \(\sqrt{-8}\): \[ \sqrt{-8} = \sqrt{8} \cdot i = 2\sqrt{2} \cdot i \] 5. Substitute back into the formula: \[ x = \frac{10 \pm 2\sqrt{2}i}{54} = \frac{10}{54} \pm \frac{2\sqrt{2}i}{54} \] 6. Simplify the fractions: \[ x = \frac{5}{27} \pm \frac{\sqrt{2}}{27}i \] ### Solution for Part (i): \[ x = \frac{5}{27} + \frac{\sqrt{2}}{27}i \quad \text{and} \quad x = \frac{5}{27} - \frac{\sqrt{2}}{27}i \] --- ### Part (ii): Solve \(21x^2 - 28x + 10 = 0\) 1. Identify coefficients: - \(a = 21\) - \(b = -28\) - \(c = 10\) 2. Calculate the discriminant (\(D\)): \[ D = b^2 - 4ac = (-28)^2 - 4 \cdot 21 \cdot 10 = 784 - 840 = -56 \] 3. Since the discriminant is negative, we will have complex roots. Now, apply the quadratic formula: \[ x = \frac{-(-28) \pm \sqrt{-56}}{2 \cdot 21} = \frac{28 \pm \sqrt{-56}}{42} \] 4. Simplify \(\sqrt{-56}\): \[ \sqrt{-56} = \sqrt{56} \cdot i = \sqrt{4 \cdot 14} \cdot i = 2\sqrt{14} \cdot i \] 5. Substitute back into the formula: \[ x = \frac{28 \pm 2\sqrt{14}i}{42} = \frac{28}{42} \pm \frac{2\sqrt{14}i}{42} \] 6. Simplify the fractions: \[ x = \frac{2}{3} \pm \frac{\sqrt{14}}{21}i \] ### Solution for Part (ii): \[ x = \frac{2}{3} + \frac{\sqrt{14}}{21}i \quad \text{and} \quad x = \frac{2}{3} - \frac{\sqrt{14}}{21}i \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

10x^(2)-20x+1=0

(i) x^(2) -10x+21 = 0 (ii) y^(2) -11y+18 = 0

(i) 2x^(2)-17x+21 =0 (ii) 5y^(2)-32 + 35 = 0

Solve 3x^(2) - 10 x + 3 = 0 .

Solve the Equation: (i) x^(2)+3x+5=0 (ii) x^(2)-x+2=0 .

Solve x^(2)-x+ (1-i)=0

(i) x^(2) - 4x + 3 = 0 (ii) y^(2) - 7y+10 = 0

Solve: (i) 3x^(2)-4x+(20)/(3)=0 . (ii) x^(2)-2x+(2)/(3)=0 .