Home
Class 12
MATHS
Show that int e^(x)[f(x)+f'(x)]dx=e^(x)....

Show that `int e^(x)[f(x)+f'(x)]dx=e^(x).f(x)+c`
Hence, evaluate: `int e^(x)((2+sin2x)/(1+cos2x))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int e^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: int e^(2x)((1-sin2x)/(1-cos2x))dx

Evaluate: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

Given that int e^x[f(x)+f^'(x)] dx = e^x f(x)+c . Using the given result evaluate int e^x(sinx+cosx)dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x) dx . Hence, evaluate int_(0)^(pi//2) (sin x - cos x)/(1+ sin x cos x) dx.

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .

If int e^(x).2^(3 log_(2)x) dx = e^(x). f(x) + C then f(x)=

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=