Home
Class 12
MATHS
Show that equations x = 5 * (1 - t^(2))...

Show that equations `x = 5 * (1 - t^(2))/(1 + t^(2)), y = 6 * (t)/(1 + t^(2) ) ` where t is a variable parameter, define an ellipse . Find its eccentricity .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (2at)/(1 + t^2) , y = (a(1-t^2) )/(1 + t^2) , where t is a parameter, then a is

Prove that the equations x = 6 (cosec t + sin t ) and y = 15(cosec t - sin t ) where t is a variable parameter, represent a hyperbola.

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

Find the derivatives of the following : x = (1-t^2)/(1+t^2), y = (2t)/(1+t^2)

Find the equation to the locus represented by x=(2+t+1)/(3t-2), y=(t-1)/(t+1) wher t is variable parameter.

If x=a((1-t^(2))/(1+t^(2))) and y=(2t)/(1-t^(2)) , then find (dy)/(dx) .

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)