Home
Class 12
MATHS
Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)...

Prove that: `2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)`

Text Solution

AI Generated Solution

To prove that \( 2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{31}{17}\right) \), we will follow these steps: ### Step 1: Simplify \( 2\tan^{-1}\left(\frac{1}{2}\right) \) Using the formula for \( 2\tan^{-1}(x) \): \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that: tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo =pi/4

Prove that tan^(-1)(1/70)-tan^(-1)(1/99)=tan^(-1)(1/239)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4