Home
Class 12
MATHS
Find the approximate value of f(3. 02), ...

Find the approximate value of `f(3. 02),` where `f(x)=3x^2+5x+3.`

A

`45.46`

B

`37.46`

C

`27.56`

D

`39.40`

Text Solution

Verified by Experts

The correct Answer is:
A

Here, we will use the definition of derivatives:
`f'(x) = (f(x+Deltax)-f(x))/((x+Deltax)-x)`
`f'(x) = (f(x+Deltax)-f(x))/(Deltax)`
Here, `x = 3 and Deltax = 0.02`
`:. f'(3) = (f(3+0.02) - f(3))/0.02->(1)`
Here, `f'(x) = 6x+5`
`:. f'(3) = 6(3)+5 = 23`
`f(3) = 3(9)+5(3)+3 = 45 `
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Find the approximate value of f(5. 001), where f(x)=x^3-7x^2+15.

Find the approximate value of f(5. 001), where f(x)=x^3-7x^2+15.

Find the approximate value of f(5. 001) , where f(x)=x^3-7x^2+15 .

Using differentials, find the approximate value of f(2. 01), where f(x)=4x^3+5x^2+2.

Find the approximate value of f(3.01) when y = f(x) = x^(2)+3x+1 .

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

If f(x) = 2x^(2)+5x+2 , then find the approximate value of f(2.01) .

Find the approximate value of f(3. 02), upto 2 places of decimal, where f(x)=3x^2+5x+3.