Home
Class 12
MATHS
Integrate the functions1/(x-sqrt(x))...

Integrate the functions`1/(x-sqrt(x))`

Text Solution

AI Generated Solution

To solve the integral of the function \( \frac{1}{x - \sqrt{x}} \), we can follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator \( x - \sqrt{x} \) by factoring out \( \sqrt{x} \): \[ x - \sqrt{x} = \sqrt{x}(\sqrt{x} - 1) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions 1/(sqrt(x+a)+sqrt(x+b))

Integrate the functions 1/(sqrt((x-a)(x-b)))

Integrate the functions 1/(sqrt((x-1)(x-2)))

Integrate the functions 1/(sqrt((2-x)^2+1))

Integrate the functions x/(sqrt(x+4)), x >0

Integrate the functions x/(sqrt(x+4)), x >0

Integrate the functions 1/(xsqrt(a x-x))

Integrate the functions 1/(x-x^3)

Integrate the functions (x-1)/(sqrt(x^2-1))

Integrate the functions 1/(sqrt(x^2+2x+2))