Home
Class 12
MATHS
Choose the correct answerint1^sqrt(3) (d...

Choose the correct answer`int_1^sqrt(3) (dx)/(1+x^2)`equals(A) `pi/3` (B) `(2pi)/3` (C) `pi/6` (D) `pi/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_1^{\sqrt{3}} \frac{dx}{1+x^2}\), we will follow these steps: ### Step 1: Identify the Integral The integral we need to solve is: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} \] ### Step 2: Use the Standard Integral Formula We know that: \[ \int \frac{dx}{1+x^2} = \tan^{-1}(x) + C \] where \(C\) is the constant of integration. ### Step 3: Apply the Limits of Integration Now we will apply the limits from 1 to \(\sqrt{3}\): \[ \left[ \tan^{-1}(x) \right]_1^{\sqrt{3}} = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) \] ### Step 4: Evaluate the Inverse Tangent Values Using known values of the inverse tangent: - \(\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}\) - \(\tan^{-1}(1) = \frac{\pi}{4}\) Substituting these values into the expression: \[ \frac{\pi}{3} - \frac{\pi}{4} \] ### Step 5: Find a Common Denominator To subtract these fractions, we need a common denominator. The least common multiple of 3 and 4 is 12: \[ \frac{\pi}{3} = \frac{4\pi}{12}, \quad \frac{\pi}{4} = \frac{3\pi}{12} \] ### Step 6: Perform the Subtraction Now, we can subtract: \[ \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{1\pi}{12} = \frac{\pi}{12} \] ### Conclusion Thus, the value of the integral is: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} = \frac{\pi}{12} \] The correct answer is option (D) \(\frac{\pi}{12}\). ---

To solve the integral \(\int_1^{\sqrt{3}} \frac{dx}{1+x^2}\), we will follow these steps: ### Step 1: Identify the Integral The integral we need to solve is: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.6|24 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer int1sqrt(3)(dx)/(1+x^2) equals (A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

Choose the correct answer int_0^(2/3) (dx)/(4+9x^2) (A) pi/6 (B) pi/(12) (C) pi/(24) (D) pi/4

Choose the correct answer int0 2/3(dx)/(4+9x^2) (A) pi/6 (B) pi/(12) (C) pi/(24) (D) pi/4

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

int_1^(sqrt(3))1/(1+x^2)dx is equal to a. pi/(12) b. pi/4 c. pi/6 d. pi/3

evaluvate int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A) pi/6 (b) (2pi)/3 (5pi)/6 (d) pi/3

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these