Home
Class 12
MATHS
If f(x) be a function such that f (9) =9...

If `f(x)` be a function such that `f (9) =9 and f '(9)=3,` then the value of `lim _(xto9) (sqrt(f (x))-3)/(sqrtx-3)` is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

If f be a function such that f (9) =9 and f '(9) = 3, then lim _(x to 9) ( (sqrt ( f (x)) - 3))/( sqrtx - 3) is equal to : a)9 b)3 c)1 d)6

If f(9) = 9, f'(9) = 4, then the value of lim_(xrarr9)(sqrt(f(x))-3)/(sqrt(x)-3) is

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f be a function such that f(9) = 9 and f'(9) = 3, then : lim_(x rarr 9) (sqrt(f(x)) - 3)/(sqrt(x) - 3) is :

If f (1) =1 f'(1)=2 then the value of lim _(xto1) (sqrt(f(x))-1)/(sqrtx-1) is-

If f(9)=9,f'(9)=4 , then evaluate lim_(xto9)(sqrtf(x)-3)/(sqrtx-3) .

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

If f(9)=9" and "f'(9)=4," then "underset(xto9)("lim")(sqrt(f(x))-3)/(sqrt(x)-3)=