Home
Class 12
MATHS
If y = (log x )/(x) then y (1) (1) =...

If `y = (log x )/(x) ` then `y _(1) (1) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = log (x + sqrt(x ^(2) + 1)) then y _(2)(1) =

log (x + y) = log2 + (1) / (2) log x + (1) / (2) log y, then

If y=log(e^(-x)+xe^(-x))," then " (1+x)y_(1)=

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If log x+log y=log(x+y), then a.x=ybxy=1 c.y=(x-1)/(x) d.y=(x)/(x-1)