Home
Class 12
MATHS
Consider the curves f(x)=x|x|-1andg(x)...

Consider the curves
`f(x)=x|x|-1andg(x)={{:((3x)/(2)","xgt0),(2x","xle0):}`
What is the area bounded by the curves?

A

`(17)/(6)` square units

B

`(8)/(3)` square units

C

2 square units

D

`(1)/(3)` square unit

Text Solution

AI Generated Solution

The correct Answer is:
To find the area bounded by the curves \( f(x) = x|x| - 1 \) and \( g(x) = \begin{cases} \frac{3x}{2} & \text{if } x > 0 \\ 2x & \text{if } x \leq 0 \end{cases} \), we will follow these steps: ### Step 1: Determine the expressions for \( f(x) \) The function \( f(x) = x|x| - 1 \) can be expressed as: - For \( x \geq 0 \): \( f(x) = x^2 - 1 \) - For \( x < 0 \): \( f(x) = -x^2 - 1 \) ### Step 2: Determine the expressions for \( g(x) \) The function \( g(x) \) is already defined piecewise: - For \( x > 0 \): \( g(x) = \frac{3x}{2} \) - For \( x \leq 0 \): \( g(x) = 2x \) ### Step 3: Find the points of intersection To find the area bounded by the curves, we need to find the points where \( f(x) = g(x) \). 1. **For \( x > 0 \)**: \[ x^2 - 1 = \frac{3x}{2} \] Rearranging gives: \[ x^2 - \frac{3x}{2} - 1 = 0 \] Multiplying through by 2 to eliminate the fraction: \[ 2x^2 - 3x - 2 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} = \frac{3 \pm \sqrt{9 + 16}}{4} = \frac{3 \pm 5}{4} \] This gives us: \[ x = 2 \quad \text{and} \quad x = -\frac{1}{2} \] 2. **For \( x \leq 0 \)**: \[ -x^2 - 1 = 2x \] Rearranging gives: \[ -x^2 - 2x - 1 = 0 \quad \Rightarrow \quad x^2 + 2x + 1 = 0 \quad \Rightarrow \quad (x + 1)^2 = 0 \] Thus, \( x = -1 \). ### Step 4: Identify the area between the curves The points of intersection are \( x = -1 \) and \( x = 2 \). ### Step 5: Set up the integral for the area The area \( A \) between the curves from \( x = -1 \) to \( x = 2 \) is given by: \[ A = \int_{-1}^{0} (g(x) - f(x)) \, dx + \int_{0}^{2} (g(x) - f(x)) \, dx \] Calculating each integral separately: 1. **For \( x \in [-1, 0] \)**: \[ A_1 = \int_{-1}^{0} (2x - (-x^2 - 1)) \, dx = \int_{-1}^{0} (2x + x^2 + 1) \, dx \] \[ = \left[ x^2 + \frac{x^3}{3} + x \right]_{-1}^{0} = \left[ 0 + 0 + 0 \right] - \left[ 1 - \frac{1}{3} - 1 \right] = 0 - \left[ \frac{1}{3} \right] = \frac{1}{3} \] 2. **For \( x \in [0, 2] \)**: \[ A_2 = \int_{0}^{2} \left(\frac{3x}{2} - (x^2 - 1)\right) \, dx = \int_{0}^{2} \left(\frac{3x}{2} - x^2 + 1\right) \, dx \] \[ = \left[\frac{3x^2}{4} - \frac{x^3}{3} + x \right]_{0}^{2} \] \[ = \left[\frac{3(2^2)}{4} - \frac{(2^3)}{3} + 2\right] - \left[0\right] = \left[\frac{12}{4} - \frac{8}{3} + 2\right] = 3 - \frac{8}{3} + 2 = 5 - \frac{8}{3} = \frac{15 - 8}{3} = \frac{7}{3} \] ### Step 6: Combine the areas The total area \( A \) is: \[ A = A_1 + A_2 = \frac{1}{3} + \frac{7}{3} = \frac{8}{3} \] Thus, the area bounded by the curves is \( \frac{8}{3} \) square units.

To find the area bounded by the curves \( f(x) = x|x| - 1 \) and \( g(x) = \begin{cases} \frac{3x}{2} & \text{if } x > 0 \\ 2x & \text{if } x \leq 0 \end{cases} \), we will follow these steps: ### Step 1: Determine the expressions for \( f(x) \) The function \( f(x) = x|x| - 1 \) can be expressed as: - For \( x \geq 0 \): \( f(x) = x^2 - 1 \) - For \( x < 0 \): \( f(x) = -x^2 - 1 \) ### Step 2: Determine the expressions for \( g(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

Consider the curves f(x)=x|x|-1andg(x)={{:((3x)/(2)","xgt0),(2x","xle0):} Where do the curves intersect?

Find the area bounded by the curves x+2|y|=1 and x=0

Consider the function: f(x)={{:((tankx)/(x),xlt0),(3x+2k^(2),xle0):} What is the non-zero value of k for which the function is continuous at x = 0?

If f(x)={{:(e^(2x^(2)+x),":",xgt0),(ax+b,":",xle0):} is differentiable at x=0 , then

Consider the curves y=sin x and y=cos x. What is the area of y=sin x bounded by the above two curves the region bounded by the above two curves and the lines x=0 and x=(pi)/(4)

Area bounded by the curves y=x^(2)-1,x+y=3 is

If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. Consider the function f(x)={{:(-2sinx,if,xle-(pi)/(2)),(Asinx+B,if,-...

    Text Solution

    |

  2. Consider the curves f(x)=x|x|-1andg(x)={{:((3x)/(2)","xgt0),(2x","xl...

    Text Solution

    |

  3. Consider the curves f(x)=x|x|-1andg(x)={{:((3x)/(2)","xgt0),(2x","xl...

    Text Solution

    |

  4. Cosider the function f(x)=|x-1|+x^(2)" where " x""inR. Which one of ...

    Text Solution

    |

  5. Cosider the function f(x)=|x-1|+x^(2)" where " x""inR. which one of ...

    Text Solution

    |

  6. Which one the following statements is correct?

    Text Solution

    |

  7. What is the area of the region bounded by x-asix, the curve y=f(x) and...

    Text Solution

    |

  8. What is the area of the region bounded by x-asix, the curve y=f(x) and...

    Text Solution

    |

  9. Consider the equation x+|y|=2y. Which of the following statements ar...

    Text Solution

    |

  10. Consider the equation x+|y|=2y. What is the derivative of y as a fun...

    Text Solution

    |

  11. Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the numbe...

    Text Solution

    |

  12. Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the numbe...

    Text Solution

    |

  13. Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the...

    Text Solution

    |

  14. Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the...

    Text Solution

    |

  15. A function f(x) is defined as follows: f(x)={{:(x+pi," for ",x""in[-...

    Text Solution

    |

  16. A function f(x) is defined as follows: f(x)={{:(x+pi," for ",x""in[-...

    Text Solution

    |

  17. Let f(x) be the greatest integer function and g(x) be the modulus func...

    Text Solution

    |

  18. Let f(x) be the greatest integer function and g(x) be the modulus func...

    Text Solution

    |

  19. If lim(xto0) phi(x)=a^(2), where ane0, then what is lim(xto0) phi((x)/...

    Text Solution

    |

  20. What is lim(xto0) e^((1)/(x^(2))) equal to?

    Text Solution

    |