Home
Class 12
MATHS
If int(-3)^(2)f(x) dx= 7/3 and int(-3)^(...

If `int_(-3)^(2)f(x) dx= 7/3` and `int_(-3)^(9) f(x) dx = -5/6` , then what is the value of `int_(2)^(9)f(x) dx` ?

A

`-(19)/(6)`

B

`(19)/(6)`

C

`3/2`

D

`-(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \int_{2}^{9} f(x) \, dx \), we can use the properties of definite integrals. We have the following information: 1. \( \int_{-3}^{2} f(x) \, dx = \frac{7}{3} \) 2. \( \int_{-3}^{9} f(x) \, dx = -\frac{5}{6} \) We can express \( \int_{2}^{9} f(x) \, dx \) in terms of the given integrals using the property: \[ \int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx \] Here, we can set \( a = -3 \), \( b = 2 \), and \( c = 9 \). Thus, we can rewrite: \[ \int_{-3}^{9} f(x) \, dx = \int_{-3}^{2} f(x) \, dx + \int_{2}^{9} f(x) \, dx \] From this, we can isolate \( \int_{2}^{9} f(x) \, dx \): \[ \int_{2}^{9} f(x) \, dx = \int_{-3}^{9} f(x) \, dx - \int_{-3}^{2} f(x) \, dx \] Now, substituting the known values: \[ \int_{2}^{9} f(x) \, dx = -\frac{5}{6} - \frac{7}{3} \] To perform the subtraction, we need a common denominator. The least common multiple of 6 and 3 is 6. We can rewrite \( \frac{7}{3} \) as \( \frac{14}{6} \): \[ \int_{2}^{9} f(x) \, dx = -\frac{5}{6} - \frac{14}{6} \] Now, combine the fractions: \[ \int_{2}^{9} f(x) \, dx = -\frac{5 + 14}{6} = -\frac{19}{6} \] Thus, the value of \( \int_{2}^{9} f(x) \, dx \) is: \[ \boxed{-\frac{19}{6}} \]

To find the value of \( \int_{2}^{9} f(x) \, dx \), we can use the properties of definite integrals. We have the following information: 1. \( \int_{-3}^{2} f(x) \, dx = \frac{7}{3} \) 2. \( \int_{-3}^{9} f(x) \, dx = -\frac{5}{6} \) We can express \( \int_{2}^{9} f(x) \, dx \) in terms of the given integrals using the property: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • CONICS - PARABOLA, ELLIPSE & HYPERBOLA

    NDA PREVIOUS YEARS|Exercise MATH|62 Videos
  • DERIVATIVES

    NDA PREVIOUS YEARS|Exercise MCQs|94 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If int_(-2)^(0) f (x) dx =k, then int_(-2)^(0) |f(x)|dx is

If int_(-2)^(5) f(x) dx = 4 and int_(0)^(5) {1+f(x)}dx = 7 , then what is int_(-2)^(0) f(x) dx equal to ?

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

If int_(-3)^(2)f(x)dx=2 and int_(2)^(5)[5+f(x)]dx=9 , then : int_(5)^(-3)f(x)dx=

If int_(-1)^(4) f(x)=4 and int_(2)^(7) (3-f(x))dx=7 , then the value of int_(2)^(-1) f(x)dx , is

Let f(x) be a periodic function with fundamental period 12 If int_(-6)^(12) f(x)dx=9 and int_(0)^(12)f(x)dx=12 then the value of | int_(0)^(6)f(x)dx | is

If int_(-2)^(5)f(x)dx=4 and int_(0)^(5){1+f(x)}backslash dx=7, then what is int_(-2)^(0)f(x)backslash dx equal to?

NDA PREVIOUS YEARS-DEFINITE INTEGRATION & ITS APPLICATION-DIRECTIONS
  1. If int(-3)^(2)f(x) dx= 7/3 and int(-3)^(9) f(x) dx = -5/6 , then what ...

    Text Solution

    |

  2. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  3. I(1) = int(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I(2) = (sqrt(sinx)dx)/...

    Text Solution

    |

  4. What is int(-pi/2)^(pi/2) x sinx dx equal to ?

    Text Solution

    |

  5. What is int(0)^(pi/2) ln(tanx) dx equal to ?

    Text Solution

    |

  6. Find the area of the parabola y^2=4a xbounded by its latus rectum.

    Text Solution

    |

  7. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is I equal to ?

    Text Solution

    |

  8. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi)((pi-x)...

    Text Solution

    |

  9. Consider I = int(0)^(pi) (xdx)/(1+sinx) What is int(0)^(pi) (dx)/(1...

    Text Solution

    |

  10. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  11. Consider is int(0)^(pi//2) ln (sinx)dx equal to ? What is int(0)^(pi...

    Text Solution

    |

  12. What is int(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal t...

    Text Solution

    |

  13. The area of a triangle, whose verticles are (3,4) , (5,2) and the p...

    Text Solution

    |

  14. प्रथम चतुर्थांश में वृत्त x^(2)+y^(2)=4, रेखा x=sqrt(3)y एवं x-अक्ष द...

    Text Solution

    |

  15. Find the area of the region in the first quadrant enclosed by x-a xi s...

    Text Solution

    |

  16. Consider the curves y= sin x and y = cos x. What is the area of the re...

    Text Solution

    |

  17. Consider the curves y = sin x and y = cos x . What is the area of ...

    Text Solution

    |

  18. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  19. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  20. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |

  21. Consider the integral I(m) = int(0)^(pi) (sin2mx)/(sinx ) dx, where ...

    Text Solution

    |